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ABSTRACT 
 
An improved finite element based numerical procedure has been presented for 
simulation of multi-stage excavation in elastic and elasto-plastic geologic 
media. Numerical examples demonstrate that the principle of uniqueness is 
satisfied for the linear elastic case. In the case of elasto-plastic analysis using 
the Tresca yield criterion, the solution compares closely with the closed-form 
solution. 
 
1. INTRODUCTION 
 
One of the important attributes of the finite element method when applied to 
problems of geotechnical engineering is the facility it offers for the simulation 
of construction history.  Two of the important simulations in the construction 
history involve placement of fill and simulation of excavation.  In the present 
paper, simulation of excavation is considered. 
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In excavation problems, the construction history is defined by the stages in 
which the excavation is carried out and supports, if any, are introduced.  The 
early numerical methods for simulating excavations (Goodman and Brown, 
1963; Duncan and Dunlop, 1969; Clough and Duncan, 1969; Duncan and 
Chang, 1970; Dunlop and Duncan, 1970; Clough and Duncan, 1971; Desai and 
Abel, 1972) were based on the hypothesis of a stress-free surface resulting 
from the removal of material above the surface.  Ishihara (1970) postulated that 
there exists a unique solution (i.e. the final stresses and displacements must be) 
independent of the sequence of excavation for a linear elastic material and time 
independent problem.  The excavation simulation algorithms proposed by 
Christian and Wong (1973) and Clough and Mana (1976) do not satisfy the 
uniqueness principle (Ishihara, 1970). 
 
Chandrasekaran and King (1974) have described a simple procedure for 
simulating excavations in soil media, which satisfies the uniqueness 
requirement.  This procedure avoids the use of element stresses and is strictly 
applicable to elastic materials. 
 
Desai and Sargand (1984) proposed a hybrid method for calculating nodal 
forces to overcome the violation of the uniqueness requirement but at the cost 
of added analytical complexity.  Ghaboussi and Pecknold (1984) demonstrated 
the validity of the uniqueness principle by using the principle of virtual work 
over the appropriate domain of interest.  Sharma et al. (1985) used “air” 
elements for the excavated elements in an algorithm that satisfied the 
uniqueness requirement.   
 
Borja et al. (1989) proposed a finite element formulation based on variational 
method for simulating excavation in elasto-plastic soils, which satisfies the 
uniqueness requirement. They used infinitesimal stiffness for the removed 
elements.  Comodromos et al. (1993) proposed a multi-stage finite element 
algorithm for excavation in elasto-plastic soils using the principle of virtual 
work.  After the assemblage of the global stiffness matrix and load vector for 
each excavation stage, the static condensation procedure is employed to reduce 
the number of element degrees-of-freedom corresponding to the removed 
nodes. 
 
The objective of this paper is to present an efficient finite element based 
numerical procedure for simulating multi-stage excavation in elasto-plastic 
geologic media.  This procedure overcomes the limitations of the algorithms 
proposed by various researches cited above. 
 
2. GENERAL FINITE ELEMENT FORMULATION FOR EXCAVATION 

SIMULATION  
 
The method of excavation simulation consists of a series of steps (stages), each 
step representing the removal of one lift of the stressed material from a 
continuous body. The procedure for one-step excavation is illustrated in Fig.1. 
Figure 1(a) shows an initial stressed body of soil or rock from which the 
shaded portion A is to be excavated. The remaining portion is labelled as B. 
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The traction, ti, exerted by region A on region B in the initially stressed body is 
shown in Fig. 1(b).  Now the excavation process involves removing the 
elements and stiffness of portion A and traction, ti from the portion B in Fig. 
1(b). This is done by applying to the portion B traction –ti (equal and opposite 
to ti) as shown in Fig. 1(c). This results in the stress free excavation surface 
abc. Using the stiffness of portion B and traction –ti, incremental 
displacements, strains and stresses are obtained and these are added to the 
original values for the portion B. 

 
Fig. 1: The excavation process 

 
In the conventional procedure, the equivalent nodal forces are determined by 
numerical integration or lumping the computed element stresses along element 
boundaries lying on the excavated surfaces.  Unfortunately, this procedure does 
not yield nodal forces which are consistent (in the finite element context) with 
the element stresses they are supposed to represent, e.g. the errors reported by 
Christian and Wong (1973) are due to the inconsistent determination of these 
nodal forces.  
 
To overcome the above limitations, various researchers (Ghaboussi and 
Pecknold, 1984; Sharma et al., 1985; Borja et al., 1989; Comodromos et al., 
1993) have given consistent general formulation for multi-stage simulation of 
excavation. They have proposed different algorithms to account for the 
excavated elements. The general formulation and the disadvantages of the 
algorithms adopted by various researchers are briefly presented in the 
following.   
 
Let {P} be the external load vector due to body forces, concentrated loads, and 
surface pressures.  {F} is the internal nodal resisting force vector computed 
from element stresses {σ} as 
 

  { } [ ] { }dVBF
Ve

T
m

1e
e ∫∑ σθ=

=

       (1) 

 



J. OF ROCK MECHANICS & TUNNELLING TECH. VOL.7 NO.1, 2001 14 

where [B] is the strain-displacement matrix, {σ} is the stress vector and m is 
the total number of elements.  In Eq. (1), θe is an indicator which has value 
zero for the elements to be removed (excavated) and unity for the remaining 
elements.  Thus θe will be equal to zero for the elements of region A and equal 
to unity for the elements of region B  (Fig. 1).  Therefore, the summation is 
taken over the relevant group of elements  (e.g. for the elements of region B).  
Equation (1) is evaluated by Gaussian integration and it provides a consistent 
relation between nodal forces and element stresses on the excavated surface. 
A residual nodal load vector {R} is defined as 
 
  {R} = {P} – {F}         (2) 
 
The incremental equilibrium equations for increment, i, can be written as  
 
  [Kti] {dr i} = {dPi} + {R i} = {dQ i}      (3) 
 
where [Kti] is the tangent stiffness matrix, {dri} is the incremental displacement 
vector, {dPi} is the incremental load vector ( = {Pi} - {P i-1}),  {R i} is  the  
residual  load  vector  ( = {Pi-1} - {F i-1}) and {dQi} is the net incremental load 
vector. 
 
For a system which is exactly in equilibrium, {Ri}=0. In nonlinear analysis, 
iterations are carried out until norm of {Ri}, ||{R i}|| is zero to within a small 
tolerance.  Displacements, strains and stresses are then updated as follows: 
 
  {r i} = {r i-1}+{dr i} 
  {εi} = { εi-1}+{d εi}       (4) 
  {σi} = { σi-1}+{d σi} 
 
For i =1 (i.e. first stage of excavation), the insitu stress vector {σo} is 
substituted in Eq.(1) to compute {Fo}. Thus {σo} is to be computed before the 
start of the excavation procedure. The computation procedure for insitu stresses 
is given in Appendix I. 
 
In Eqs. (1) and (3), the load vector {F} and tangent stiffness matrix [Kt] are 
calculated by taking the summation over the existing elements.  Thus the 
excavated elements up to a particular stage do not contribute to {F} and {K}.  
This is achieved by deactivation of elements (by assuming θe = 0).  Some of 
the excavated (deactivated) elements, which represent the support (shotcrete 
lining, reinforcement etc.) can be reactivated later when required in a particular 
sequence of excavation.  
 
2.1 Excavated Region 
 
There are two ways to account for the excavation of elements. 
 
(a) The elements in the excavated region are assumed to be “air” elements, 

i.e. their contribution to the global stiffness matrix is reduced to almost 
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zero.  This can be done by reducing the Young’s modulus of elements 
in the excavated region to a very low value ( say 10-6 of the original 
value) leading to infinitesimal stiffness matrix for the removed 
elements. This procedure has been followed by Christian and Wong 
(1973), Clough and Mana (1976), Sharma et al. (1985), Chandrasekaran 
and King (1974), and Borja et al. (1989). The inclusion of infinitesimal 
stiffness matrix for the removed elements has two disadvantages 
(Comodromos et al., 1993): 

 
(i) It violates the principle of virtual work arising from the 

contribution of the excavated elements to the equilibrium solution 
process. 

(ii) The global stiffness matrix has infinitesimal pivots corresponding 
to the removed nodes, resulting in a considerable numerical error 
during the solution process.   

 
(b) From the original mesh of the body, the elements and nodes to be 

removed are deactivated, i.e. their contributions to the global stiffness 
matrix and load vector are suppressed. Ghaboussi and Pecknold (1984) 
and Comodromos et al. (1993) have used this procedure. To eliminate 
the degrees-of-freedom corresponding to the removed (excavated) 
nodes, partitioning method and static condensation procedure is 
employed by Ghaboussi and Pecknold (1984) and Comodromos et al. 
(1993), respectively.  At each excavation stage, an assemblage of the 
global stiffness matrix and force vector is carried out and then the 
matrix partitioning or static condensation is done to obtain the 
equilibrium equations for the remaining domain (after excavation at 
each stage). This results in larger computer storage and computation 
time. 

 
3. PROPOSED FINITE ELEMENT ALGORITHM 
 
To overcome the disadvantages of the finite element algorithms given above, a 
modified finite element algorithm is proposed. The steps for the proposed 
algorithm are as follows. 
 
Step 1: Set θe = 1 for all the elements of the body. 
 
Step 2: Calculate the insitu stresses {σ0} at Gauss points of the elements of the 

body, following the procedure outlined in Appendix I. 
 
Step 3: Calculate the internal nodal resisting force vector {Fo} using Eq. (1). 
 

  { } ∑∫ σ=
e

Ve 0
T

o dV}{]B[F        (5) 
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Step 4: Set the external nodal load vector {Po} = {F o}, with this the body is in 
equilibrium with insitu stresses and the residual load vector {R} of Eq. 
(2) is zero. 

 
Step 5: For each sequence of excavation i  
 

(i) Apply external load increment {dPi}, if any, to the body and add it 
to the external load vector {P},  

 
  {Pi} = {P i-1} + {dP i}        (6) 
 
(ii) Delete the elements and nodes excavated in this sequence. The 

deleted elements are assigned θe = 0. Thus the elements are 
deactivated and will not be included in the assembly process of 
stiffness matrix [K] and in the summation of Eq. (1). 

 
 Similarly the deleted nodes are also deactivated and they are 

allocated full fixity in both x and y directions.  In the present 
algorithm, the equation numbers are redefined eliminating those 
degrees-of-freedom for the nodes having fixity in one or both 
directions.  Thus the restrained degrees-of freedom in the original 
body and corresponding to the deleted (deactivated) nodes due to 
excavation are eliminated. The limitation of earlier finite element 
formulations that assumed ‘air’ elements and that involve matrix 
and vector partitioning or static condensation are eliminated in 
the present algorithm. With the deletion of the restrained degrees-
of-freedom, the effective number of equations is significantly 
reduced, resulting in saving in computer storage and time.  

  
(iii) If insitu stresses are due to gravity (Appendix I), calculate the 

equivalent nodal load vector {Qbi} due to gravity of the excavated 
elements as 

 

  { } ∑∫=
e

Ve

T
bi dVXNQ }{][        (7) 

 
 where [N] is shape function matrix and }{ X  is body force 

intensity vector with 








−
=

γ
0

}{ X  for a two-dimensional problem 

and γ is the unit weight of the material. 
 
 The summation is taken over the excavated elements. Then 

define, 
 
  {Pi} = {Pi} – {Q bi}        (8) 
 
 Skip this step in case of uniform insitu stresses. 
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(iv) Calculate the load {Si} on excavated surface as 
 

  { } ∑ ∫−=
e

Ve

T
eii dVBPS }{][}{ σθ       (9) 

 where summation is taken over the remaining elements. The load 
vector {Si} represents the load on the excavated surface (= -ti of 
Fig. 1). 

 
(v) Set {Pi} = {P i} - {S i}      (10) 
 
(vi) Divide the load vector {Si} into increments, which can be uniform 

or non-uniform. This is done by defining the load factors αj. The 
load vector {Si} is multiplied by load factor αj to obtain the 
incremental load vector for jth increment. Since multiplication 
factors must sum up to unity, ∑ =

j
j 1α .  The load factors αj can 

be uniform or non-uniform depending upon whether load 
increments are uniform or non-uniform. 

 
(vii) For each increment, j 
 

{Pi} = {P i} + αj {Si}      (11) 
 

 {dQj} = {P i} - ∑ ∫
e

Ve

T
e dVB }{][ σθ     (12) 

 [K tj] [drj]  =  {dQj}      (13) 
 

Solve for displacements {drj} and then compute incremental 
strains and stresses. Displacements, strains and stresses are 
updated using Eq. (4). Iterations are carried out until convergence 
is obtained. For the elasto-plastic finite element analysis, the 
procedure as explained by Desai et al. (1991) in detail for 
hierarchical models is used. This procedure is also applicable for 
other yield criteria. 

 
Step (vii) is followed for all the increments and step 5 is repeated for all the 
sequences of excavation. 

 
It may be noted that some of the deactivated elements, which form concrete or 
shotcrete lining or reinforcement elements can be reactivated later, when 
required in a particular sequence of excavation. The algorithm provides for 
both deactivation and reactivation of elements and nodes and also for change of 
properties by assigning different material type to the reactivated elements. 
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4. ANALYSIS AND RESULTS 
 

The proposed algorithm of Section 3 has been implemented in computer 
program DSC-SST-2D (Desai, 1999) developed for 4-noded and 8-noded solid 
elements in FORTRAN-90 language. The program has been verified by 
comparing predictions with closed-form solutions and other numerical schemes 
for problems in simulation of excavation sequences.  The predictions satisfy 
the uniqueness principle (Ishihara, 1970) for linear elastic analysis. The 
analyses and results of three typical problems are presented herein. 
 
The first example deals with a numerical patch test on a linear elastic one-
dimensional excavation problem solved by Clough and Mana (1976) and Desai 
and Sargand (1984). The second example concerns a two-dimensional plane 
strain excavation problem which has been solved for linear elastic and elasto-
plastic behaviour. These two examples have also been analysed by 
Comodromos et al. (1993).  The third problem is related to a deep circular 
tunnel. 
 
4.1  Example 1: Simulation of one-dimensional excavation 
 
Clough and Mana (1976) analysed a linear elastic one-dimensional excavation 
problem (Fig. 2) using 8-noded elements in which the upper half (20 m) of the 
material was excavated using one and eight steps.  The parameters used in the 
analysis are: 
 

 
Fig. 2: One-dimensional excavation problem 

  
Young’s modulus,  E = 10000 t/m2 

 Poisson’s ratio,  ν = 0.2 
 Unit weight,   γ = 1 t/m3 
 In-situ stress ratio,  Ko = 0.5 
 
Desai and Sargand (1984) solved the same problem using hybrid method by 
simulating the excavation of upper half by one element.  Taking into account 
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the boundary conditions (Fig. 2) and plane strain condition the exact solution 
for this problem for vertical stress, σy, can be derived as 
 

  
)21)(1()1( νν

εν
ν

σ
−+

+
+

= y
y

EE
    (14) 

 
where εy is the vertical strain. 
 
When upper half (Fig. 2) is excavated, a surface traction of σy = 20 t/m2 is 
applied substituting it in Eq. (14), εy is computed as 1.8 x 10-3.  Then the 
vertical displacement v at the excavated surface is 1.8 x 10-3 x 20 m = 0.036 m 
= 3.6 cm. 
 
The same problem was analysed using the proposed algorithm and program 
DSC-SST-2D by one and four excavation stages (Fig. 3).  Element 2 is 
excavated in Fig. 3a and elements 2, 3, 4 and 5 are excavated in Fig. 3b by 
removing one element in each sequence.  The results obtained were identical 
providing a displacement of 3.6 cm for the nodes on the excavated surface.  
The predicted values compare exactly with the closed-form solution and the 
predicted value is independent of number of sequences, thus satisfying the 
uniqueness requirement, Ishihara (1970).  The same results are obtained when 
4-noded elements are used in Fig. 3. 

 
Fig. 3: Finite Element Mesh for one-dimensional excavation  

(a) Single stage (b) Four stage 
 
4.2  Example 2: Plane Strain Excavation in Elasto-Plastic Material 
 
The problem of two-dimensional plane strain excavation analysed by 
Comodromos et al. (1993) has been considered.  The mesh is shown in Fig. 4.  
It has 72, eight-noded elements and 251 nodes.  Nodes along the bottom 
boundary are restrained in both directions whereas the nodes along the two (left 
and right) vertical boundaries are restrained in horizontal direction. The 
elements in the upper right hand corner, bounded by thick line are excavated in 
one and three stages. 
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Fig. 4: Finite element mesh for two-dimensional plane strain open excavation 

 
The analyses have been carried out for linear elastic behaviour and elasto-
plastic behaviour using Drucker-Prager yield criterion given by 
 

  021 =−+= kJaJf D      (15) 
 
where J1 denotes the first invariant of stress tensor, J2D is the second invariant 
of deviatoric stress tensor and a and k are material constants. 
 
The parameters used in the two analyses are: 
 
 Unit weight,   γ = 19.8 kN/m3 
 Bulk modulus,  K = 4700 kPa 
 Shear modulus,  G = 2200 kPa 
 Insitu stress ratio,  Ko = 0.9 
 Drucker-Prager parameter, a = 0.25 
 Drucker-Prager parameter, k = 10 kPa 
 
Single stage and three stage excavation analyses were performed.  In the first 
case, elements 52-54, 61-63 and 70-72 (9 elements) were removed 
simultaneously, while in the second case, three-step layer by layer excavation 
was considered in which elements 70-72, 61-63 and 52-54 are removed 
sequentially. 
 
Figure 5 shows the horizontal displacement profile of the vertical boundary of 
excavation line AB (shown in Fig. 4) for the two cases from linear elastic 
analysis.  It can be seen that the resulting final profile for both single and three-
step analyses is identical, a fact that verifies the uniqueness requirement. 
 
The above analyses were carried out by considering elasto-plastic soil 
behaviour with the Drucker-Prager yield criterion. The horizontal displacement 
profiles are shown in Fig. 6.  A very small difference between the two final 
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profiles is observed in numerical values (maximum difference of less than 1%), 
but it is not visible in Fig. 6.  These results compare closely with those by 
Comodromos et al. (1993). 
 

 
Fig. 5: Horizontal displacement profile along line        

AB due to linear elastic analysis (Example 2) 
 
4.3  Example 3:  Excavation of a Deep Circular Tunnel  
 
A circular tunnel of 8.0 m diameter located at a depth, h, of 300 m below 
ground level is to be excavated.  It is considered to be deep tunnel with uniform 
insitu stress condition.  The rock medium is considered to be biotite gneiss. The 
analyses have been carried out for linear elastic behaviour and elasto-plastic 
behaviour using Tresca yield criterion. The material properties are as follows: 
 
 Young’s modulus,  E = 4.48 x 105 kPa 
 Unit weight,   γ = 29.4 kN/m3 
 Poisson’s ratio,  ν = 0.18 
 Height of over burden (h) = 300 m 
 Insitu stress ratio,  Ko = 1 
 Tresca strength constant, k = 4150 kPa  
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Corresponding to h = 300 m, the uniform insitu stresses are (Eqs. I.1- I.3 in 
Appendix - I). 
 
  σvo  =  γh  =  8820 kPa 
  σho  =  Koσvo  =  8820 kPa 
  τvho  =  0 
 
Since the problem is symmetric about both x and y axes, only quarter section of 
tunnel with surrounding rock is discretised. The mesh is shown in Fig. 7.  It has 
35, 8-noded elements and 134 nodes.  Elements 1 and 2 are excavated in one 
step.  In Fig. 7, the arcs are taken at radius of 4.0, 4.2, 4.5, 5, 5.75, 7, 9, 13, 20, 
32, 50 and 80 m and radial lines at angles of 0, 30, 60 and 90 degrees are 
considered. 

 
Fig. 6: Horizontal displacement profile along line AB due to 

elasto-plastic analysis (Example 2) 
 
Both linear elastic and elasto-plastic analyses are carried out using plane strain 
idealization. 
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(a) Linear Elastic Analysis 
 
Pender (1980) has given closed form solution for displacements and stresses 
for a circular tunnel for excavation in a uniform insitu stress field considering 
linear elastic behaviour. The equations for Ko = 1 condition are as follows: 
 

 
r

pa

E
u

21 ν+=        (16) 

 
 σr = p (1 – a2 / r2)      (17) 
 
 σθ = p (1 + a2 / r2)      (18) 
 

where p is the uniform insitu stress, a is the radius of tunnel and r is any radial 
distance, u is the radial displacement and σr and σθ are radial and 
circumferential stresses respectively. The stresses σr and σθ are the minor (σ3) 
and major (σ1) principal stresses respectively as shear stress τrθ = 0. 
 

 
 

 
Fig. 7: Finite element mesh for circular tunnel 
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Table 1:  Radial Displacements (Elastic Analysis) 

 
Radial displacement (mm) Radial distance 

(m) Closed-form, Eq. (16) FEM 
4.00 92.93 93.59 
4.20 88.50 88.91 
4.50 82.60 83.00 
5.00 74.34 74.74 
5.75 64.64 65.04 
7.00 53.10 53.52 
9.00 41.30 41.77 

13.00 28.59 29.17 
20.00 18.59 19.40 
32.00 11.62 12.85 
50.00 7.43 9.32 
80.00 4.65 7.64 

 
 

Table 2 :  Principal Stresses (Elastic Analysis) 
 

Principal stresses (kPa) 
Closed-form, Eqs. (17)-(18) FEM 

Radial distance 
(m) 

σ1 σ3 σ1 σ3 
4.04 17458.8 181.2 17500.3 183.7 
4.16 16985.6 654.4 17026.0 658.3 
4.26 16585.8 1054.2 16625.5 1058.7 
4.44 15991.3 1648.7 16029.4 1654.8 
4.61 15474.5 2165.5 15512.0 2172.3 
4.89 14712.7 2927.3 14747.7 2936.5 
5.16 14124.6 3515.4 14159.4 3524.9 
5.59 13334.8 4305.2 13366.5 4317.7 
6.01 12722.6 4917.4 12754.9 4929.3 
6.73 11931.1 5708.9 11959.1 5725.1 
7.42 11382.0 6258.0 11411.8 6272.4 
8.58 10738.6 6901.4 10763.6 6920.6 
9.84 10276.3 7363.7 10305.1 7379.1 

12.15 9775.5 7864.5 9797.4 7886.8 
14.48 9493.3 8146.7 9519.5 8164.7 
18.52 9231.5 8408.5 9253.0 8431.3 
22.53 9097.9 8542.1 9122.1 8562.1 
29.46 8982.6 8657.4 9004.3 8680.0 
35.80 8930.1 8709.9 8952.9 8731.3 
46.19 8886.1 8753.9 8908.1 8776.1 
56.33 8864.5 8775.5 8886.9 8797.3 
73.65 8846.0 8794.0 8868.0 8816.2 
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Table 3 : Principal Stresses (Elasto-Plastic Analysis) 
 

Principal stresses (kPa) 
Closed-form, Eqs. (21)-(24) FEM 

Radial distance 
(m) 

σ1 σ3 σ1 σ3 
4.04 8386.2 86.2 8387.2 87.2 
4.16 8619.9 319.9 8621.0 321.0 
4.26 8828.2 528.2 8829.3 529.3 
4.44 9158.8 858.8 9159.8 859.8 
4.61 9469.2 1169.2 9470.3 1170.3 
4.89 9973.7 1673.7 9974.7 1674.7 
5.16 10410.0 2110.0 10411.3 2111.3 
5.59 11079.1 2779.1 11080.0 2780.0 
6.01 11683.8 3383.9 11685.5 3385.5 
6.73 11624.5 4324.5 12625.1 4325.1 
7.42 12534.3 5105.7 12596.9 5107.5 
8.58 11601.5 6038.5 11652.3 6052.1 
9.84 10931.2 6708.8 10984.2 6720.2 

12.15 10205.2 7434.8 10244.3 7460.1 
14.48 9796.1 7843.9 9839.4 7865.1 
18.52 9416.6 8223.4 9450.9 8253.5 
22.53 9222.9 8417.1 9260.2 8444.2 
29.46 9055.7 8584.3 9088.5 8615.9 
35.80 8979.6 8660.4 9013.7 8690.7 
46.19 8915.9 8724.1 8948.4 8756.0 
56.33 8884.5 8755.5 8917.5 8786.9 
73.65 8857.7 8782.3 8890.0 8814.4 

 
Linear elastic analysis of tunnel using the mesh in Fig. 7 was carried out in 
single step by removing elements 1 and 2. The results for displacements and 
stresses are presented in Tables 1 and 2.  The results of closed-form solutions 
are also tabulated in these tables for comparison.  There is a close agreement 
between the two results.  The small discrepancy can be due to the non-
simulation of infinite extent of the rock medium. 
 
(b) Elasto-plastic analysis 
 
Obert and Duvall (1967) have presented the derivation for stresses for elasto-
plastic analysis of a circular tunnel for uniform insitu stress field with Ko=1 
condition considering Tresca yield criterion: 
 

 σ1 - σ3 = 2k                (19a) 
or σθ - σr = 2k                (19b) 

 
where σ1 and σ3 are major and minor principal stresses respectively and k is 
the strength constant.  The equations for stresses and the radial distance, c up to 
the boundary between the plastic and elastic zones are as follows: 
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Using p = 8820 kPa and k = 4150 kPa, c is determined as 7.02 m.  Thus the 
zone within 4 ≤ r ≤ 7.02 is plastic and zone with r ≥ 7.02 m is elastic. 
 
Elasto-plastic analysis of the tunnel using mesh in Fig. 7 was carried out in 
single step by removing elements 1 and 2. The yield zone from finite element 
analysis develops from element 3 to 17 i.e. up to radius of 7 m.  The results for 
stresses are presented in Table 3 along with those from Eqs. (21) – (24).  The 
two results compare closely. The small discrepancy can be due to the non-
simulation of infinite extent of the rock medium. 
 
5. CONCLUSIONS 
 
A finite element formulation for simulating multi-stage excavation in elasto-
plastic geologic medium has been presented.  A detailed algorithm is presented 
which can be easily implemented in any computer code.  The excavated 
elements and nodes are eliminated during assembly in this algorithm, thus it is 
not necessary to use “air” elements, static condensation and matrix partitioning 
as it was done in previous processes by others.  Due to this, the algorithm is 
very efficient and accurate. 
 
Numerical examples demonstrate that the proposed algorithm satisfies the 
uniqueness requirement for elastic excavation problems.  In the case of elasto-
plastic analysis (example 2) one –stage and three-stage analyses give slightly 
different results with maximum difference of less than 1.0%.  In practice, 
multi-stage excavation should be used to obtain realistic and accurate solutions 
for elasto-plastic geologic medium. 
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In case of deep circular tunnel (example 3) the predicted results match closely 
with the closed form solutions.  The small discrepancy can be due to the non-
simulation of infinite extent of the rock medium. 
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APPENDIX - I 
 

INSITU  STRESSES 
 

Insitu stresses in the ground are due to the gravity stresses and past tectonic 
forces.  There are two options for computing insitu stresses, depending upon 
the type of problem to be analysed and these are discussed below. 
 
(i) Gravity insitu stresses 
 
The vertical insitu stress σvo due to gravity is calculated due to the over-burden 
and lateral insitu stress σh0 is taken as in-situ stress ratio (or coefficient of earth 
pressure at rest) Ko times the vertical insitu stress.  For horizontal ground, 
insitu shear stress τhv0 is taken as zero.  Thus, 
 

  σv0 = γ y     (I.1) 
 
  σh0 = Koσv0     (I.2) 
 
  τhv0 = 0     (I.3) 

 
where γ is the unit weight and y is the overburden depth.   
 
The above equations are applicable for homogeneous continuous body.  When 
the body to be analysed is non-homogeneous, Eqs.(I.1) to (I.3) cannot be used 
as γ is variable from layer to layer.  In this case, finite element analysis of the 
body is carried out for the gravity forces.  The vertical stress from the analysis 
is taken as σv0 and the lateral and shear stresses are modified using Eqs. (I.2) 
and (I.3). 
 
(ii) Uniform insitu stresses 
 
For the analysis of deep tunnels, the in-situ stresses are taken as uniform in the 
body i.e. all the elements will have same insitu stresses.  The vertical in-situ 
stress σv0 is calculated using Eq. (I.1) by taking overburden depth y up to the 
centre of the tunnel.  Then Eqs. (I.2) and (I.3) are used to determine lateral and 
shear stresses.  Thus the stress vector {σo} will be the same in all the elements. 
  

 


