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ABSTRACT

An improved finite element based numerical procechas been presented for
simulation of multi-stage excavation in elastic aeldsto-plastic geologic
media. Numerical examples demonstrate that thecipten of uniqueness is
satisfied for the linear elastic case. In the aafselasto-plastic analysis using
the Tresca yield criterion, the solution comparesealy with the closed-form
solution.

1 INTRODUCTION

One of the important attributes of the finite eletnmethod when applied to
problems of geotechnical engineering is the facititoffers for the simulation

of construction history. Two of the important siations in the construction
history involve placement of fill and simulation ekcavation. In the present
paper, simulation of excavation is considered.



12 J. OF ROCK MECHANICS & TUNNELLING TECH. VOL.7 No.1, 2001

In excavation problems, the construction historydéined by the stages in
which the excavation is carried out and suppoftany, are introduced. The
early numerical methods for simulating excavatig@®odman and Brown,
1963; Duncan and Dunlop, 1969; Clough and Dunc&&9;1 Duncan and
Chang, 1970; Dunlop and Duncan, 1970; Clough anacBru, 1971; Desai and
Abel, 1972) were based on the hypothesis of assfres surface resulting
from the removal of material above the surfacdiihisra (1970) postulated that
there exists a unique solution (i.e. the finalstes and displacements must be)
independent of the sequence of excavation foreafielastic material and time
independent problem. The excavation simulatiororittyns proposed by
Christian and Wong (1973) and Clough and Mana (L@it6not satisfy the
uniqueness principle (Ishihara, 1970).

Chandrasekaran and King (1974) have described plesimprocedure for

simulating excavations in soil media, which sagisfithe uniqueness
requirement. This procedure avoids the use of eéhtratresses and is strictly
applicable to elastic materials.

Desai and Sargand (1984) proposed a hybrid metbocdlculating nodal
forces to overcome the violation of the uniquemesgiirement but at the cost
of added analytical complexity. Ghaboussi and Reltk(1984) demonstrated
the validity of the uniqueness principle by usihg principle of virtual work
over the appropriate domain of interest. Sharmalet(1985) used “air”
elements for the excavated elements in an algorithat satisfied the
uniqueness requirement.

Borja et al. (1989) proposed a finite element fdatian based on variational
method for simulating excavation in elasto-plagt@ils, which satisfies the
unigueness requirement. They used infinitesimdfnsss for the removed
elements. Comodromos et al. (1993) proposed ai-stalje finite element

algorithm for excavation in elasto-plastic soilsngsthe principle of virtual

work. After the assemblage of the global stiffnesstrix and load vector for
each excavation stage, the static condensatioreguoe is employed to reduce
the number of element degrees-of-freedom correspgntb the removed

nodes.

The objective of this paper is to present an dffitifinite element based
numerical procedure for simulating multi-stage emten in elasto-plastic
geologic media. This procedure overcomes the ditoihs of the algorithms
proposed by various researches cited above.

2. GENERAL FINITE ELEMENT FORMULATION FOR EXCAVATION
SIMULATION

The method of excavation simulation consists aérées of steps (stages), each
step representing the removal of one lift of theessed material from a
continuous body. The procedure for one-step extavad illustrated in Fig.1.
Figure 1(a) shows an initial stressed body of swilrock from which the
shaded portion A is to be excavated. The remaiprgion is labelled as B.
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The traction,f exerted by region A on region B in the initiadiiressed body is
shown in Fig. 1(b). Now the excavation processoives removing the
elements and stiffness of portion A and tractipriroim the portion B in Fig.
1(b). This is done by applying to the portion Bctran — (equal and opposite
to §) as shown in Fig. 1(c). This results in the strigee excavation surface
abc. Using the stiffness of portion B and tractie#, incremental
displacements, strains and stresses are obtairstdhase are added to the
original values for the portion B.

g

[a]

(e}
Fig. 1. The excavation process

In the conventional procedure, the equivalent nddales are determined by
numerical integration or lumping the computed eletstresses along element
boundaries lying on the excavated surfaces. Umnfaitely, this procedure does
not yield nodal forces which amnsistent (in the finite element context) with
the element stresses they are supposed to represgnthe errors reported by
Christian and Wong (1973) are due to the inconsisietermination of these

nodal forces.

To overcome the above limitations, various reseash(Ghaboussi and
Pecknold, 1984; Sharma et al., 1985; Borja et18189; Comodromos et al.,
1993) have given consistent general formulationnfioitti-stage simulation of
excavation. They have proposed different algorithtosaccount for the
excavated elements. The general formulation anddikadvantages of the
algorithms adopted by various researchers are Iyripfesented in the
following.

Let {P} be the external load vector due to bodycés, concentrated loads, and
surface pressures. {F} is the internal nodal texjsforce vector computed
from element stresses} as

{A=36.] [B]'{ckv (1)

e=1
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where [B] is the strain-displacement matrixg}{is the stress vector and m is
the total number of elements. In Eq. (&),is an indicator which has value
zero for the elements to be removed (excavated)uaitygt for the remaining
elements. ThuB. will be equal to zero for the elements of regioad equal
to unity for the elements of region B (Fig. 1).hefefore, the summation is
taken over the relevant group of elements (eigthfe elements of region B).
Equation (1) is evaluated by Gaussian integratiwth i provides a consistent
relation between nodal forces and element stressése excavated surface.

A residual nodal load vector {R} is defined as

{R} ={P} - {F} (2)
The incremental equilibrium equations for increméntan be written as
[Kd] {dri} = {dPi} + {Ri} = {dQi} 3)

where [Ki] is the tangent stiffness matrix, {firs the incremental displacement
vector, {dR} is the incremental load vector ( = §P- {Pi1}), {Ri} is the
residual load vector (={B} - {Fii}) and {dQ} is the net incremental load
vector.

For a system which is exactly in equilibrium, 8. In nonlinear analysis,
iterations are carried out until norm of JR|{Ri}|| is zero to within a small
tolerance. Displacements, strains and stressebemaipdated as follows:

{r} = {ria}+{dri}
{e} = {&}+{d &} (4)
{o} = { 0i1}+{d ai}

For i =1 (i.e. first stage of excavation), the fnsistress vector dg} is
substituted in Eq.(1) to compute 4FThus {o.} is to be computed before the
start of the excavation procedure. The computgirocedure for insitu stresses
is given in Appendix .

In Egs. (1) and (3), the load vector {F} and tarigstiffness matrix [i] are
calculated by taking the summation over the exgstalements. Thus the
excavated elements up to a particular stage deomtibute to {F} and {K}.
This is achieved by deactivation of elements (lsuasngB. = 0). Some of
the excavated (deactivated) elements, which reptabe support (shotcrete
lining, reinforcement etc.) can be reactivatedrlateen required in a particular
sequence of excavation.

2.1  Excavated Region

There are two ways to account for the excavatioslerhents.

(a) The elements in the excavated region are assumiael ‘tair’ elements,
i.e. their contribution to the global stiffness mais reduced to almost
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(b)

3.

zero. This can be done by reducing the Young'suhsdof elements
in the excavated region to a very low value ( s@y @&f the original

value) leading to infinitesimal stiffness matrix rfdhe removed
elements. This procedure has been followed by Gdmisand Wong

(2973), Clough and Mana (1976), Sharma et al. (. 98bandrasekaran
and King (1974), and Borja et al. (1989). The is@a of infinitesimal

stiffness matrix for the removed elements has twsadVantages
(Comodromos et al., 1993):

(i) It violates the principle of virtual work arrsyj from the
contribution of the excavated elements to the dguiim solution
process.

(i) The global stiffness matrix has infinitesimalots corresponding
to the removed nodes, resulting in a considerableamical error
during the solution process.

From the original mesh of the body, the elementd aades to be
removed are deactivated, i.e. their contributianshie global stiffness
matrix and load vector are suppressed. GhaboudsPaoknold (1984)
and Comodromos et al. (1993) have used this proeedo eliminate

the degrees-of-freedom corresponding to the remofedavated)

nodes, partitioning method and static condensatwacedure is

employed by Ghaboussi and Pecknold (1984) and Comums et al.

(1993), respectively. At each excavation stageassemblage of the
global stiffness matrix and force vector is carrieot and then the
matrix partitioning or static condensation is dote obtain the

equilibrium equations for the remaining domain €afexcavation at
each stage). This results in larger computer séomayd computation
time.

PROPOSED FINITE ELEMENT ALGORITHM

To overcome the disadvantages of the finite eleralyurithms given above, a
modified finite element algorithm is proposed. Téteps for the proposed
algorithm are as follows.

Step 1: Seb. = 1 for all the elements of the body.

Step 2: Calculate the insitu stresses}{at Gauss points of the elements of the

body, following the procedure outlined in Appendix

Step 3: Calculate the internal nodal resistingdorector {F} using Eq. (1).

{F}=2] [BI'{oo}dv (5)
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Step 4: Set the external nodal load vecta} fP{F o}, with this the body is in
equilibrium with insitu stresses and the residoadl vector {R} of Eq.
(2) is zero.

Step 5: For each sequence of excavation i

(i)

(ii)

(iif)

Apply external load increment {¢}Rif any, to the body and add it
to the external load vector {P},

{Pi} = {Pi1} + {dP;} (6)

Delete the elements and nodes excavated & gshguence. The
deleted elements are assigneéd= 0. Thus the elements are
deactivated and will not be included in the assgnubbcess of
stiffness matrix [K] and in the summation of Eq).(1

Similarly the deleted nodes are also deactivated they are
allocated full fixity in both x and y directionsin the present
algorithm, the equation numbers are redefined elating those
degrees-of-freedom for the nodes having fixity me @r both
directions. Thus the restrained degrees-of freedothe original

body and corresponding to the deleted (deactivatedles due to
excavation are eliminated. The limitation of earlimite element
formulations that assumed ‘air’ elements and thatolve matrix
and vector partitioning or static condensation aminated in

the present algorithm. With the deletion of thdreesed degrees-
of-freedom, the effective number of equations gnificantly

reduced, resulting in saving in computer storagd ame.

If insitu stresses are due to gravity (Appendix djjculate the

equivalent nodal load vector {§) due to gravity of the excavated
elements as

{Qu}=2 [ INI"{X}av ()

where [N] is shape function matrix andX} is body force

. . I 0 : .
intensity vector with{ X} ={ } for a two-dimensional problem
andy is the unit weight of the material.

The summation is taken over the excavated elemériten
define,

{Pi} = {Pi} - {Q i} (8)

Skip this step in case of uniform insitu stresses.
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(iv)

v)
(vi)

Calculate the load {$on excavated surface as

{s}={R}-26.[ [BI'{0}dv 9)

where summation is taken over the remaining elésndine load
vector {S} represents the load on the excavated surface; Gf -
Fig. 1).

Set{R} ={Pi}-{Si} (10)

Divide the load vector {$ into increments, which can be uniform
or non-uniform. This is done by defining the loadtbrsa;. The
load vector {§ is multiplied by load factora; to obtain the
incremental load vector for jth increment. Sinceltiplication
factors must sum up to unit)Z a; =1. The load factors; can

J
be uniform or non-uniform depending upon whetheadlo
increments are uniform or non-uniform.

(vii) For each increment, |

{Pi} ={Pi} + o; {Si} (11)
{dQi} = {P}- X6, [BI"{a}dV (12)
[Kq] [dr] = {dQ} (13)

Solve for displacements {girand then compute incremental
strains and stresses. Displacements, strains amdset are
updated using Eqg. (4). Iteratioase carried out until convergence
is obtained. For the elasto-plastic finite elemantlysis, the
procedure as explained by Desai et al. (1991) itailddor
hierarchical models is used. This procedure is afgalicable for
other yield criteria.

Step (vii) is followed for all the increments anes 5 is repeated for all the
sequences of excavation.

It may be noted that some of the deactivated el&snerich form concrete or
shotcrete lining or reinforcement elements can d&activated later, when
required in a particular sequence of excavatiore &algorithm provides for
both deactivation and reactivation of elementsraodes and also for change of
properties by assigning different material typéht® reactivated elements.
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4. ANALYSISAND RESULTS

The proposed algorithm of Section 3 has been im@hed in computer
program DSC-SST-2D (Desai, 1999) developed for dedoand 8-noded solid
elements in FORTRAN-90 language. The program hasn beerified by
comparing predictions with closed-form solutionsl ather numerical schemes
for problems in simulation of excavation sequencd@$e predictions satisfy
the uniqueness principle (Ishihara, 1970) for Imedastic analysis. The
analyses and results of three typisalblems are presented herein.

The first example deals with a numerical patch testa linear elastic one-
dimensional excavation problem solved by Clough ldliadia (1976) and Desai
and Sargand (1984). The second example concem®-dimensional plane
strain excavation problem which has been solvediriear elastic and elasto-
plastic behaviour. These two examples have alson baralysed by
Comodromos et al. (1993). The third problem isted to a deep circular
tunnel.

4.1  Example 1. Simulation of one-dimensional excavation
Clough and Mana (1976) analysed a linear elastezdimensional excavation
problem (Fig. 2) using 8-noded elements in whidah dpper half (20 m) of the

material was excavated using one and eight stéps. parameters used in the
analysis are:

20m

T
1

Area to be
— excavated

0m 4> L

A
Fig. 2: One-dimensional excavation problem

Young's modulus,  E = 10000 tfm
Poisson'’s ratio, v=0.2

Unit weight, y=1t/n?
In-situ stress ratio, &= 0.5

Desai and Sargand (1984) solved the same problémy tgbrid method by
simulating the excavation of upper half by one aetn Taking into account
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the boundary conditions (Fig. 2) and plane straindition the exact solution
for this problem for vertical stress,, can be derived as

E VEeg,
o, = +
Yoa+y) a+v)d-2v)

(14)

whereg, is the vertical strain.

When upper half (Fig. 2) is excavated, a surfaaetion ofoy = 20 t/nt is
applied substituting it in Eq. (14§, is computed as 1.8 X 1?0 Then the
vertical displacement v at the excavated surfade§s 10° x 20 m = 0.036 m
=3.6.cm.

The same problem was analysed using the propogedithm and program

DSC-SST-2D by one and four excavation stages (B)g. Element 2 is

excavated in Fig. 3a and elements 2, 3, 4 and ®xravated in Fig. 3b by
removing one element in each sequence. The resiitgéned were identical
providing a displacement of 3.6 cm for the nodestlum excavated surface.
The predicted values compare exactly with the cddsem solution and the

predicted value is independent of number of seggnthus satisfying the
unigueness requirement, Ishihara (1970). The gaswdts are obtained when
4-noded elements are used in Fig. 3.

{a} {b)
Fig. 3: Finite Element Mesh for one-dimensionalasation
(a) Single stage (b) Four stage

4.2  Example 2: Plane Strain Excavation in Elasto-Plastic M aterial

The problem of two-dimensional plane strain excavatanalysed by

Comodromos et al. (1993) has been considered. msh is shown in Fig. 4.
It has 72, eight-noded elements and 251 nodes. edNadbng the bottom
boundary are restrained in both directions whetteasiodes along the two (left
and right) vertical boundaries are restrained imiZomtal direction. The

elements in the upper right hand corner, boundeithiok line are excavated in
one and three stages.
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]
70 vl 72 1
61 62 63 bm
52 53 54
16
10m
¥ <k
] 777
l A .
30m 1

=
Fig. 4: Finite element mesh for two-dimensionahglatrain open excavation

The analyses have been carried out for linear ielé#gthaviour and elasto-
plastic behaviour using Drucker-Prager yield ciitergiven by

f=al, +J,, —k=0 (15)

where J denotes the first invariant of stress tensgs,id the second invariant
of deviatoric stress tensor and a and k are mhtarestants.

The parameters used in the two analyses are:

Unit weight, y = 19.8 kN/ni
Bulk modulus, K = 4700 kPa
Shear modulus, G = 2200 kPa

Insitu stress ratio, &=0.9
Drucker-Prager parameter, a = 0.25
Drucker-Prager parameter, k = 10 kPa

Single stage and three stage excavation analysespeeformed. In the first
case, elements 52-54, 61-63 and 70-72 (9 elemewese removed
simultaneously, while in the second case, threg-kstger by layer excavation
was considered in which elements 70-72, 61-63 a4 are removed
sequentially.

Figure 5 shows the horizontal displacement praffléhe vertical boundary of
excavation line AB (shown in Fig. 4) for the twosea from linear elastic
analysis. It can be seen that the resulting fanafile for both single and three-
step analyses is identical, a fact that verifiesithiqueness requirement.

The above analyses were carried out by considedlagto-plastic soil
behaviour with the Drucker-Prager yield criteridime horizontal displacement
profiles are shown in Fig. 6. A very small diffaoe between the two final



SHARMA, VARADARAIAN & DESAl — SIMULATION OF EXCAVATION IN GEOLOGIC MEDIA 21

profiles is observed in numerical values (maximuffetence of less than 1%),

but it is not visible in Fig. 6. These results gare closely with those by
Comodromos et al. (1993).

Height (m)

——Initial Position
—=First Step
—+—Second Step
—o—Third Step
—» Single-Stage

-20 20 40 60 80 100

Displacement (mm)

Fig. 5: Horizontal displacement profile along line
AB due to linear elastic analysis (Example 2)

4.3 Example 3. Excavation of a Deep Circular Tunnel

A circular tunnel of 8.0 m diameter located at gtde h, of 300 m below

ground level is to be excavated. It is consideodoe deep tunnel with uniform
insitu stress condition. The rock medium is coad to be biotite gneiss. The
analyses have been carried out for linear elagtfmabour and elasto-plastic
behaviour using Tresca yield criterion. The matgnaperties are as follows:

Young's modulus, E =4.48 x 1RkPa
Unit weight, y = 29.4 kN/ni
Poisson’s ratio, v=0.18

Height of over burden (h) = 300 m
Insitu stress ratio, =1

Tresca strength constant, k = 4150 kPa
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Corresponding to h = 300 m, the uniform insitu stes are (Egs. I.1- 1.3 in
Appendix - I).

Gw = yh = 8820 kPa
Oho = KOOVO = 8820 kPa
Tvho = O

Since the problem is symmetric about both x anggsaonly quarter section of
tunnel with surrounding rock is discretised. Thesme shown in Fig. 7. It has
35, 8-noded elements and 134 nodes. Elements P anel excavated in one
step. In Fig. 7, the arcs are taken at radius@f442, 4.5, 5, 5.75, 7, 9, 13, 20,

32, 50 and 80 m and radial lines at angles of 0,680and 90 degrees are
considered.

\ \
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29 —+— Second Step
—e—Third Step
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P

»o 4

-20 20 40 60 80 100
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Fig. 6: Horizontal displacement profile along IiAB due to
elasto-plastic analysis (Example 2)

Both linear elastic and elasto-plastic analysescarged out using plane strain
idealization.
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@ Linear Elastic Analysis

Pender (1980) has given closed form solution fepldicements and stresses
for a circular tunnel for excavation in a uniformsitu stress field considering
linear elastic behaviour. The equations fgr=Kl condition are as follows:

_1+vpa’

u= E (16)
o,=p(1l-4/r) (17)
og=p @A +4&/r (18)

where p is the uniform insitu stress, a is theusdif tunnel and r is any radial
distance, u is the radial displacement aod and oy are radial and
circumferential stresses respectively. The stregsaadagg are the minords)
and major §¢1) principal stresses respectively as shear strgss0.

N

hival

ravairirilliard

i ®f/ @m\ \ E::::Eeg viaw
/ L

o

Fig. 7: Finite element mesh for circular tunnel
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Table 1. Radial Displacements (Elastic Analysis)

Radial distance

Radial displacement (mm)

(m) Closed-form, Eq. (16) FEM
4.00 92.93 93.59
4.20 88.50 88.91
4.50 82.60 83.00
5.00 74.34 74.74
5.75 64.64 65.04
7.00 53.10 53.52
9.00 41.30 41.77
13.00 28.59 29.17
20.00 18.59 19.40
32.00 11.62 12.85
50.00 7.43 9.32
80.00 4.65 7.64
Table2: Principal Stresses (Elastic Analysis)
. Principal stresses (kPa)
Rad'a('rr?)'smnc Closed-form, Egs. (17)-(18) FEM
01 O3 01 O3
4.04 17458.8 181.2 17500.3 183.7
4.16 16985.6 654.4 17026.0 658.3
4.26 16585.8 1054.2 16625.5 1058.7
4.44 15991.3 1648.7 16029.4 1654.8
4.61 15474.5 2165.5 15512.0 2172.3
4.89 14712.7 2927.3 14747.7 2936.5
5.16 14124.6 3515.4 14159.4 3524.9
5.59 13334.8 4305.2 13366.5 4317.7
6.01 12722.6 4917.4 12754.9 4929.3
6.73 11931.1 5708.9 11959.1 5725.1
7.42 11382.0 6258.0 11411.8 6272.4
8.58 10738.6 6901.4 10763.6 6920.6
9.84 10276.3 7363.7 10305.1 7379.1
12.15 9775.5 7864.5 9797.4 7886.8
14.48 9493.3 8146.7 9519.5 8164.7
18.52 9231.5 8408.5 9253.0 8431.3
22.53 9097.9 8542.1 9122.1 8562.1
29.46 8982.6 8657.4 9004.3 8680.0
35.80 8930.1 8709.9 8952.9 8731.3
46.19 8886.1 8753.9 8908.1 8776.1
56.33 8864.5 8775.5 8886.9 8797.3
73.65 8846.0 8794.0 8868.0 8816.2
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Table 3: Principal Stresses (Elasto-Plastic Analysis)

- Principal stresses (kPa)
Rad'a('rr?)'Sta”C Closed-form, Egs. (21)-(24) FEM
01 O3 01 O3
4.04 8386.2 86.2 8387.2 87.2
4.16 8619.9 319.9 8621.0 321.0
4.26 8828.2 528.2 8829.3 529.3
4.44 9158.8 858.8 9159.8 859.8
4.61 9469.2 1169.2 9470.3 1170.3
4.89 9973.7 1673.7 9974.7 1674.7
5.16 10410.0 2110.0 10411.3 2111.3
5.59 11079.1 2779.1 11080.0 2780.0
6.01 11683.8 3383.9 11685.5 3385.5
6.73 11624.5 4324.5 12625.1 4325.1
7.42 12534.3 5105.7 12596.9 5107.5
8.58 11601.5 6038.5 11652.3 6052.1
9.84 10931.2 6708.8 10984.2 6720.2
12.15 10205.2 7434.8 10244.3 7460.1
14.48 9796.1 7843.9 9839.4 7865.1
18.52 9416.6 8223.4 9450.9 8253.5
22.53 9222.9 8417.1 9260.2 8444.2
29.46 9055.7 8584.3 9088.5 8615.9
35.80 8979.6 8660.4 9013.7 8690.7
46.19 8915.9 8724.1 8948.4 8756.0
56.33 8884.5 8755.5 8917.5 8786.9
73.65 8857.7 8782.3 8890.0 8814.4

Linear elastic analysis of tunnel using the mesliriopn 7 was carried out in

single step by removing elements 1 and 2. The te$ot displacements and
stresses are presented in Tables 1 and 2. Thissre$welosed-form solutions

are also tabulated in these tables for comparistmere is a close agreement
between the two results. The small discrepancy lmandue to the non-

simulation of infinite extent of the rock medium.

(b) Elasto-plastic analysis

Obert and Duvall (1967) have presented the dedmafr stresses for elasto-
plastic analysis of a circular tunnel for uniformsitu stress field with k1
condition considering Tresca yield criterion:

01-03=2k (19a)
or Op - 0y = 2K (19b)

whereo; andosz are major and minor principal stresses respegtiaal k is
the strength constant. The equations for stressés$he radial distance, c up to
the boundary between the plastic and elastic zareeas follows:
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c:aex;{p_kJ (20)
2k
Plastic zone (& r < c)
o, = 2k In (r/a) (22)
Op = 2k[1+1In(r/a)] (22)
Elastic zone (B c)
, I
o =pl- kaz ex;{ P kj (23)
L opr k J]
. ka? p-k)]|
O, =p|l+—ex (24)
L pr k J]

Using p = 8820 kPa and k = 4150 kPa, c is deterdhawe 7.02 m. Thus the
zone within 4< r < 7.02 is plastic and zone witter7.02 m is elastic.

Elasto-plastic analysis of the tunnel using meslirion 7 was carried out in
single step by removing elements 1 and 2. The yielte from finite element
analysis develops from element 3 to 17 i.e. u@tbus of 7 m. The results for
stresses are presented in Table 3 along with those Egs. (21) — (24). The
two results compare closely. The small discreparery be due to the non-
simulation of infinite extent of the rock medium.

5. CONCLUSIONS

A finite element formulation for simulating multiegye excavation in elasto-
plastic geologic medium has been presented. Aldétalgorithm is presented
which can be easily implemented in any computerecodThe excavated
elements and nodes are eliminated during assemlthis algorithm, thus it is
not necessary to use “air’ elements, static corat@rsand matrix partitioning
as it was done in previous processes by otherse tBuhis, the algorithm is
very efficient and accurate.

Numerical examples demonstrate that the proposgdritim satisfies the
uniqueness requirement for elastic excavation prabl In the case of elasto-
plastic analysis (example 2) one —stage and thegesanalyses give slightly
different results with maximum difference of lesgann 1.0%. In practice,
multi-stage excavation should be used to obtailist&aand accurate solutions
for elasto-plastic geologic medium.
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In case of deep circular tunnel (example 3) thelipted results match closely
with the closed form solutions. The small discrepacan be due to the non-
simulation of infinite extent of the rock medium.
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APPENDIX - |
INSITU STRESSES

Insitu stresses in the ground are due to the gratiesses and past tectonic
forces. There are two options for computing instresses, depending upon
the type of problem to be analysed and these acaised below.

(i) Gravity insitu stresses

The vertical insitu stress,, due to gravity is calculated due to the over-barde
and lateral insitu stress, is taken as in-situ stress ratio (or coefficieh¢arth
pressure at rest) Ktimes the vertical insitu stress. For horizorgabund,
insitu shear stress,o is taken as zero. Thus,

Ovwo = vy (1.2)
Oho = KoOvo (1.2)
Thvo = 0 (| 3)

wherey is the unit weight and y is the overburden depth.

The above equations are applicable for homogenemniinuous body. When
the body to be analysed is non-homogeneous, EQstdl.(1.3) cannot be used
asy is variable from layer to layer. In this casajté element analysis of the
body is carried out for the gravity forces. Thetioal stress from the analysis
is taken ao, and the lateral and shear stresses are modifiad &sis. (1.2)
and (1.3).

(i) Uniform insitu stresses

For the analysis of deep tunnels, the in-situ segsre taken as uniform in the
body i.e. all the elements will have same insitesges. The vertical in-situ
stresso,g is calculated using Eq. (I.1) by taking overburdiEpth y up to the
centre of the tunnel. Then Egs. (1.2) and (I.8) @sed to determine lateral and
shear stresses. Thus the stress veadgrjill be the same in all the elements.



