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ABSTRACT 
 
The strength of initially intact rock increases non-linearly with increase in the 
confining pressure. This paper proposes that there should be a saturation limit to the 
incremental gain in the frictional strength due to an increase in the confining pressure. 
Critical state of a rock is said to be reached if there is no further increase in deviator 
stress or shear stress at failure due to an increase in confining stress or normal stress. 
It is suggested that the coefficient of friction in terms of incremental shear strength/ 
normal stress is negligible beyond a critical confining stress, which is about uniaxial 
compressive strength of the rock material. The critical state should, therefore, be a 
part of the non-linear failure criterion. A simple parabolic failure criterion is 
suggested based on this hypothesis. The criterion involves only one unknown 
parameter compared to at least two in most of the other criteria in vogue, and may be 
obtained from a single triaxial test. The parameter may also be obtained from initial 
value of the coefficient of internal friction µo. As such the friction law is modified and 
a simple correlation is found to assess the coefficient of internal friction µ at any 
confining pressure. The modified friction law will improve our understanding of the 
non-linear geodynamics. 
 
Keywords: Critical state rock mechanics, non-linear failure criterion, coefficient of 
internal friction 
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1.  INTRODUCTION 
 
At present our basic understanding of the strength of the earth’s crust is based on a 
simple model that utilizes the friction law of rocks (Byerlee, 1978) in the shallower or 
‘brittle’ layer of the crust and the plastic flow law in the deeper or ‘ductile’ layer 
(Goetze and Evans, 1979; Sibson, 1982; Meissner and Strehlau, 1982). Faulting and 
sliding on frictional surface is the primary mode of deformation in the upper 
lithosphere. A wide deformation conditions are possible and these must be 
investigated to comprehend earthquake source processes and factors that control 
lithospheric strength. 
 
The Fig. 1 shows a simple model of interaction between colliding earth plates. 
Nedoma (1997) analysed the state of stresses in the earth plates, considering non-
linear elasto-plastic –thermal behaviour of rocks and faults. The lower plate bends 
downwards, releasing horizontal tectonic stresses, which become minor principal 
stresses near the thrust. Thus there is subsidence and normal faulting in the (lower) 
subducting plate. On the contrary, the upper plate bends upwards, resulting in 
compression and higher tectonic stresses, which become major principal stresses. 
Hence this is the region of continuous uplifting (in the form of mountainous terrain) 
and thrust faulting near the inter-plate boundary. Simultaneously, its bottom part also 
bends upwards, releasing the tangential stresses. Two distressed (decompressed) 
zones are indicated by the stress analysis of Nedoma (1997). The temperature of 
melting of rocks is reduced by decrease in the confining stresses. The rock melts in 
these decompressed zones (Fig. 1). In nature, the molten rock may come out on the 
ground surface as a pair of volcanoes at some favourable geological situations. The 
critical state Rock Mechanics suggests that the coefficient of friction will tend to be 
nearly zero below the brittle crust. 

 
 
 
 

Fig. 1 - Interaction between boundaries of earth plates (Nedoma, 1997) 
 
Coulomb’s linear failure criterion has been used extensively to assess the shear 
strength of intact rocks. The criterion can be expressed as follows: 
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 ni  c          σµτ +=         (1) 

 
Where τ and σn are shear and normal effective stress resolved on the eventual fracture 
plane, c is cohesion and µi is the coefficient of internal friction (Lockner and Beeler, 
2002). It is a well accepted fact now, that, linear approximation of the failure 
envelope can only be done if variation in σn is very small. For large variation, like 
those occurring at great depths in the earth crust, the non-linearity of the failure 
envelope plays a great role in assessing the available frictional strength of the rocks. 
Bilinear expressions have been suggested by Byerlee (1978) and continuously varying 
strength with increase in confining pressure has been suggested by Lockner (1998). 
The coefficient of friction µ, in this case, does not remain constant and varies with 
increase in the effective normal stress. For any ambient stress condition, the 
instantaneous coefficient of friction µ can be obtained as the gradient of the Mohr's 
failure surface i.e. µ = ∂τ/∂σn in τ, σn plane (Fig.2). It is proposed in this paper that 
the value of µ should approach zero as the rock reaches a critical state. Beyond this, 
there will be no more increase in the frictional strength due to an increase in confining 
stress or normal stress. The strength will therefore reach a saturation limit. The critical 
state in this paper is assumed when confining pressure equals the unconfined 
compressive strength of the rock. A strength criterion is proposed for initially intact 
rocks and friction law is modified. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 - Mohr failure envelope showing relation between stresses and failure 
parameters (Lockner and Beeler, 2002) 
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The non-linear geodynamical analysis is performed in terms of the incremental shear 
strength (∆τ) and incremental effective normal stress (∆σ) along an active fault with 
reference to the initial state of stress as follows: 
 

∆σµ∆τ =          (2) 

 
The effect of cohesion in Eqn. (2) need not, therefore be considered. Evidently, ∆τ  

cannot exceed the shear strength of adjoining weaker rock under high confining 
stress. 
 
 
2. THE STRENGTH CRITERION 
 
A strength criterion defines the failure surface. In present case a two dimensional 
form of the criterion is suggested in deviatoric stress (σ1- σ3) and σ3 plane (Singh and 
Singh 2003); where σ1 is the effective major principal stress at failure and σ3 is the 
effective minor principal stress. The effect of the intermediate principal stress is not 
considered in the present form. A parabola is used to define the strength criterion as 
follows (Fig. 3). 

σ3

σ1-σ3
y = Ax2 + Bx + C

σcj

σ3 = σci

 
Fig. 3 - The proposed parabolic strength criterion 

 
 

(σ1- σ3) =A (σ3)
2 + B (σ3) + C      (3) 

 
Substituting σ1 = σci  at σ3 = 0; we get C = σci; the criterion is written as: 
 

(σ1- σ3) =A (σ3)
2
  + B (σ3) + σci      (4) 

 
Where σci is the uniaxial compressive strength (UCS) of the rock material. To obtain 
parameter B, the critical state concept is applied. The critical state of initially intact 
rock is defined as the stress condition under which, Mohr envelope of peak shear 
strength reaches a point of zero gradient (Barton, 1976) as shown in Fig. 4. This 
represents the maximum possible shear strength of a rock and any further increment 
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in confining stress or normal stress will not cause any increase in deviator stress or 
shear stress at failure. For critical state, there is an affective confining pressure above 
which, the shear strength cannot be made to increase (Barton, 1976). Also, the 
experimental evidence (Hoek, 1983) suggests that the Brittle-Ductile transition takes 
place at a confining pressure approximately equal to the unconfined compressive 
strength (UCS) of the rock material (Fig. 5). An approximate value of the critical 
confining pressure may, therefore, be taken equal to the UCS of the rock material. 
This value may however be modified with more experimental experience on a given 
rock material. 
 
Differentiating Eq. (4) 
 

 
( )

BA  2          3 +σ=
σ∂

σ−σ∂

3

31  

 

 
Fig. 4- Critical state of rock (Barton, 1976) 

 

 
Fig. 5 - Brittle-Ductile transition (Hoek, 1983) 
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For critical state σ3 → σci and 
( )

0  
3

31 →
σ∂

σ−σ∂
 

 
 ⇒ B   =   - 2 A σci        (5) 

 
The strength criterion may therefore be written as 

 





σ≥σσ−σ
σ≤σ<σ+σσ−+σ

=σ
ci3

2
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ci3ci3ci
2

3
1

)(A2

0)A21()A(
   (6) 

 
In addition to the uniaxial compressive strength of the rock, which is generally 
available for the concerned rock from laboratory tests, the above criterion has only 
one criterion parameter A.  
 
The above criterion was applied to 132 data sets of triaxial test data of intact rocks, 
available from Sheorey (1997), and having uniaxial compressive strength varying 
from ≈7 to 500. The parameter A was computed for each rock by fitting experimental 
data through least square method and σ1 value for each confining pressure was 
calculated. It is heartening to observe that the coefficient of correlation between the 
experimental and the calculated values of σ1 is as high as 0.98 (Fig. 6). It proves the 
applicability of the strength criterion proposed and also the critical state of rocks at σ3 
≈σci. The non-linearity is due to mechanics of the critical state (or the law of 
saturation). It would be interesting to study the effect of critical state on seismic wave 
velocities in the rocks. 
 

 
Fig.6 - Comparison of experimental major principal stress values with those 

calculated through the proposed criterion 
 
Theoretically, only single triaxial test is required to assess the parameter A; however 
at least three tests are suggested for reliable assessment of the parameter. The 
parameter A, when plotted against the UCS of the rock, exhibits a strong correlation 
with the UCS (Fig. 7). In the absence of triaxial test results, a rough estimation of the 
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parameter may be made through the correlation (Fig. 7) as follows (Singh and Singh, 
2005): 
 

A =  -3.97 (σci)
-1.10  for σci =7 - 500 MPa    (7) 

 
or B = 7.94 (σci)

-0.10        (8) 
 

y = 3.9736x-1.0998
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Fig. 7 -  Variation of parameter A with UCS 

 
 
3. FRICTIONAL RESISTANCE OF INTACT ROCKS 
 
The fracture and failure of rocks is important in studies related to earthquakes 
(Lockner and Beeler, 2002) and plate tectonics (Shankar et al., 2000). The coefficient 
of internal friction is defined as the gradient of the failure surface i.e. µ = ∂τ/∂σn at 
given σn (Fig. 1). With increase in the depth of rocks in earthquake or plate tectonic 
studies, the overburden pressure increases. The assessment of the incremental shear 
strength through linear equation like Mohr-Coulomb criterion will overestimate the 
prediction of shear strength. Instead, a non-linear equation should be used to closely 
predict the shear strength within the brittle crust. The peak shear strength parameters c 
and φ should vary according to the level of normal stress and can be obtained by 
drawing tangent to the failure surface at the desired normal stress. Balmer (1952) has 
given expressions, using which, the instantaneous c and φ may be computed as 
follows: 
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3

1

σ

σ
 tanθ

∂
∂

=  (11) 

 φ   =   2θ - 90o, µ = tan-1(2θ - 90o) 
 c   =   τn - σn tan φ (12) 
 
where σn is the normal stress and τn is the corresponding shear stress on Mohr failure 
envelope. 

 
3.1 Coefficient of Internal Friction under Unconfined State 
 
The coefficient of internal friction µo, is easily available for different rock materials. It 
is shown here, that this value of µo may also be used to obtain the criterion parameters 
A and B; and the entire range of non-linear strength envelope may be generated. 
 
Differentiating Eqn. (6) 

 

ci3
3

1 σ2A  - 1  σ2A 
σ

σ
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∂

 for 0<σ3≤σci (13) 

 
Substituting σ3 → 0;   σ1 → σci 
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Also, substituting B for – 2 A σci 

B  1   
3

1 +=
σ∂
σ∂

 (14) 

 
Using Eqn. (11) 

 
tan2 θ = 1 + B 

Putting θ = 45 + 
2
φ

 

φ−
φ=

Sin1

 Sin 2
B  (15) 

 
If, the coefficient of internal friction in unconfined state is denoted as µo, the 
parameter B and A may be obtained as 
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2
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µ)µ  (1

µ 
-A

−+
=  (17) 

 
Thus the advantage of the proposed criterion is that all the parameters A, B and C 
have conceptual meaning. It is applicable to weak rocks also (σci >7 MPa). 

 
3.2 Coefficient of Internal Friction under Confined State 
 
The coefficient of internal friction µ, is not a constant value, rather it goes on reducing 
with the increase in effective confining pressure. An evidence of this is given by 
Shankar et al. (2000), who have back-analysed a friction angle (tan φ = µ) of only 5° 
beyond a depth of 40 km below the ground surface along the plate boundary in the 
Tibet Himalayan plate. It is interesting to note that lesser the frictional resistance 
along colliding inter-plate boundaries, lesser will be the locked up strain energy in the 
large earth plates and so lesser are the chances of great earthquakes in that area. In 
fact highest earthquake of only M7 on Richter's scale had taken place in the Tibetan 
pleatue. Thus there is balancing mechanism in the nature to avoid too high intensity of 
earthquakes.  
 
To observe how µ varies with confining pressure, a rock having σci = 50 MPa is 
assumed. A value of µo, say 0.7 is assumed and the parameters A and B are computed. 
Now σ3 is varied from 0 to σci and µ is computed for each confining pressure. The 
computations are repeated for several µo values. The variation of µ for different 
values of µo, is presented in Fig. 8, where, µ is plotted against non-dimensional 
parameter σ3/σci. It is interesting to see that if any other σci is taken, the same plots are 
obtained. These unique plots can, therefore, be used for getting the µ value at any 
effective confining pressure. The following simple correlation, obtained by trial and 
error, has been found adequate to assess the µ for any initial µo (<2) and UCS (σci >7 
MPa). 
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o

σ

σ
 - 1 µ µ  (18) 

    ≈ 0 for σ3 ≥ σci . 
 
It may be seen in Fig. 9, that there is reasonable agreement between the values of µ 
that are derived from the Mohr's envelope and those from Eqn. 18. Further, the 
density of (hard) rocks is likely to increase slightly with the increasing confining 
stresses within the lithosphere. There may be a little gain in the strength after σ3>σci; 
as such µ in Eqn. 18 may be a small quantity and not zero for σ3 ≥ σci. This 
hypothesis along with the effect of temperature needs further experimental studies for 
specific rock materials. 
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Fig 8 - Variation of coefficient of friction with confining pressure 
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Fig. 9 - Comparison of coefficient of friction derived from Mohr’s envelope with that 

obtained from Eq. 18 
 
 
3.3 Maximum Shear Strength of a Rock 
 
The critical state mechanics suggests that there is an upper limit to the deviator 
strength of rock materials. The maximum shear strength and corresponding normal 
stress of a rock may be obtained as follows: 
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For maximum shear strength   σ3  =  σci 
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The corresponding normal stress will be  
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Where τmax and (σn)max are the maximum shear strength and corresponding effective 
normal stress on a fault plane in the rock. It is suggested that the incremental shear 
strength, in analysis of plate tectonics, may be taken nearly zero if the normal stress 
acting on the rock equals or exceeds the above critical value (Singh et al., 2004). 
 
 
4. CONCLUDING REMARKS 
 
It is well recognized that the failure envelope for rocks is not straight line but 
curvilinear and concave towards the normal stress axis. It is proposed in this paper 
that the critical state of rock should be a part of the non-linearity of the strength 
criterion. A simple parabolic strength criterion is proposed and the critical state is 
assumed at the confining pressure equal to the UCS of the rock material or as found 
experimentally. The coefficient of internal friction µ, which is the gradient of the 
failure surface, is observed to be varying non-linearly from a value of µo, in 
unconfined state, to about zero in the critical state. Plots have been presented to assess 
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µ at any given confining pressure (σ3). The plots are drawn against the non-
dimensional parameter (σ3/σci) and are found to be independent of the UCS of the 
rock, therefore may be used for all rock types in the non-linear geodynamical or any 
other analysis. A simple mathematical expression has also been suggested to compute 
µ accurately, at any confining pressure (Eq. 18).  
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