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ABSTRACT

Many of the engineering structures like foundatioh$®ridge piers, towers and dams
are located at shallow depth. The jointed rock miasseath such near surface
structures deforms under unconfined stress comditidoints, the most commonly
occurring discontinuities, dominate the engineeriegponse of the mass, as the
normal stress acting on the joints is very lowntkd rock mass fails in several modes
and dilation occurs due to roughness and intenackif the joints. Understanding of
the failure mechanism of the mass and the modelihghe stress-deformation
behaviour is necessary for reliable analysis arsigdeof the structures in such rock
masses. An extensive experimental programme wasngta and executed on
specimens of jointed mass with varying degree tdriacking, orientation and the
geometry of the joints. The tests were performedenmunconfined state to allow the
dilation and also to allow specimen freely adogt flilure mode. The paper discusses
the details of the experimental programme and sofmthe results obtained. The
Poisson’s ratio of the rock under uniaxial loadiogndition is observed to be
consistently more than 0.5 for most of the casesomstitutive model is suggested to
explain the stress-deformation behaviour. The mizdeased on the normal and shear
stiffnesses of the joints. The stiffnesses aretdétb#o be varying with normal stress.
The applicability of the constitutive model to thesults of the experimental
programme is also discussed.

Key words: Jointed rock mass, normal and shear stiffnesgretion, constitutive
model.

1 INTRODUCTION

The rock masses encountered in civil and miningrexaging projects are invariably
jointed. Under unconfined or low confining presseamndition, the deformability of

these masses is governed by both the propertigheofoints and the intact rock
material. The important properties of the jointieeting the mass behaviour are their
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shear strength including dilation, stiffness, or@&ion, frequency and interlocking
conditions. The analytical studies on these aspeat® been conducted by many
researchers in the past e.g. Goodman (1976), Gaoétra. (1968), Hart et al.(1988)
and Shi (1988). The “Equivalent Continuum Materiapproach has been found to be
more convenient for the masses, which are higtdgtéired. The approach has been
used by several investigators e.g. Gerrard (1982shinaka and Yamabe (1986),
Huang et al. (1995), Singh (2000) and Li (2001)e Tlosed form expressions for the
equivalent deformation modulus have been given lmartd et al. (1995) and Li
(2001). The expressions for constitutive equatibogsHuang et al. (1995) were
derived for three sets of joints with two domingtsets symmetrically oriented about
the direction of loading. However, Li (2001) detivne equations for one set of joints
and neglected the dilation.

In the present study, an experimental programme &esuted wherein jointed
specimens simulating a jointed rock mass were degteler variable conditions of
orientation and interlocking of joints (Singh, 199The specimens have been tested
under uniaxial compression exhibiting typical moadédailure occurring in nature.
The expressions for constitutive equations have lolegived to compute the tangent
modulus and lateral deformation of the jointed maRse expressions take into
account more than one set of joints at any arlyiteaientation and the effect of the
dilation is considered through a dilatancy factbhe normal and shear stiffnesses
used in the constitutive equations are treatedetodrying with applied stress level.
The applicability of the constitutive equations ttee experimental results is also
discussed in the study.

1.1 Earlier Model Studieson Jointed Rocks and Scope of Study

One of the best ways to investigate the mechanisfailore of jointed rocks is to
conduct physical model study. The failure modesfawed to have great influence on
the response of the mass (Singh et al., 1997) e@heer studies have been conducted
under direct shear, uniaxial, and triaxial stressd@tions and some of these have been
by Goldstein et al. (1966), Hayashi (1966), Browi®710a, 1970b), Brown and
Trollope (1970), Ladanyi and Archambault (1972)ndsein and Hirschfeld (1973),
Lama (1974), Yaji (1984), Arora (1987), Roy (1998ihd Yang and Huang (1995).
Very few of these studies were conducted underutiiaxial stress conditions; rest
were a part of experimental programme mainly deed¢bwards confined conditions.
Moreover, most of these studies have not been avedwon scale free jointed mass.
The mass can be considered scale free, if it has than about 150 blocks or at least
5 elements in each direction. These investigatiares as such not adequate to
understand the failure mechanism of mass undernfimeal state where joints act
under very low normal stress and the dilation plagsimportant role. The present
study has therefore, been directed to study tlemgtih and deformational behaviour
of scale free jointed mass under unconfined camdliti

2 EXPERIMENTAL PROGRAMME

Keeping the above points under consideration, dilewing specific experimental
studies were planned and executed on the sandsliile model material:
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(ii)

(iii)

11z

Tests were performed on specimens of jointed roassmunder unconfined

conditions. A rock like model material (sand-limack) was used to simulate

the weak rock. The specimens had at least six elesria each direction to
behave free of scale effects.
The specimens had three sets of intersecting asttadgoints (Fig. 1). The joint
Set-l was continuous and the joints in this seteweclined at angle8 with the

horizontal. The orientatiof was varied from Oto 9C.

The joint set-1l was orthogonal to joint set-l astdpped at variable stepping ‘s’.

For each orientation, the stepping was varied foto 7/8 of the width of the
block at small intervals. The variation of steppiimgroduces changes in
interlocking conditions. The joint set-lll was alyg kept vertical (Type-A
specimens, Fig. 1).
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(iv) A few tests were also planned with changed geomadtriylocks forming the
specimens for selected orientations and steppiigse6 B, C and D specimens,
Fig. 1).

(v) Platens of size 15cm x 15cm were used at the tapthe bottom of the
specimen to distribute load uniformly.

(vi) Sandwiches of Teflon sheets smeared with silice@agg were used at the top
and the bottom of the specimen to ensure fricti@e fend loading system.
Horizontal and vertical deformations were recordgith incremental load. The
mode of failure of each specimen was recorded #itetest.

3 RESULTSAND DISCUSSIONS
3.1 Model Material

The physical and engineering properties of thecintaaterial are presented in Table 1.
The average uniaxial compressive strengif, of the sand-lime brick material is
17.13 MPa. The ratio of uniaxial compression tostienstrength for the present
material is 6.8. The stress-strain curve for thadnmaterial is presented in Fig. 2; the
curve is elastic-plastic in nature with the failis&gain about 0.5%. The tangent
modulus E at 50% of failure stress is 5344 MPa. The moduhi® (E/o) of the
material is 312 and on Deere-Miller (1966) classifion chart the material is
classified as ‘EM'.

Table 1- Physical and engineering properties ofehathterial

Property Value
Dry density,ya(kN/m°) 16.86
Porosity (%) 36.94
UCS, o (MPa) 17.13
Brazilian strengtlg, (MPa) 2.49
Tangent modulus, EGPa) 5.34
Poisson’s ratioy, 0.19
Cohesion, c(MPa) 4.67
Friction angle of intact materiah® | 33.00
Friction angle along the Jointg; | 37.00
Deere-Miller classification (1966) EM

The Mohr-Coulomb parameters and @ for the intact material were determined by
conducting triaxial shear strength tests unger 0.98, 1.82, 2.89 and 4.07 MPa. The
Mohr envelope for the intact material is presente&ig. 3. The specimens failed in
brittle manner under uniaxial loading and showedtitity with increase in confining
pressure. The XRD analysis of the material indit&4% Quartz, 14% Calcite, 11%
Mica and 5.5% of Kaolinite and Feldspars each.

3.2  Modesof Failure of the Jointed Mass
The modes of failure of the jointed mass were vasgnplex. There was always a

combination of more than one failure mechanisms sindle mode of failure was
rarely found solely responsible for the entire sl It was however, possible to
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identify the most dominating mode initiating theldee of the specimen. Out of all
combinations available, four distinct modes wemnidied as (i)splitting by vertical
fracture planes passing through intact materigl,siearing through intact material,
(iii) rotation of blocks and (iv)diding along the critical joint planes. The typical
specimens failed due to different modes are shovigs. 4 to 7.
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Fig. 2 - Stress-strain curve for intact model mater
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Fig. 3 - Mohr envelopes for the intact model maieri

3.2.1 Observations on modes of failure

The summary of failure modes occurring for vari@maesnbinations of stepping and
orientation for type-A specimens is presented imbl&a2a. The modes of failure
observed for Types-B, C and D specimens confirmiable 2b. It is observed that a
particular mode of failure lies in specific rangeodentation of continuous joints and
stepping. The shifting of mode from sliding to steg and splitting for lowd values
indicate that the various steppings used in thidystorrespond to different levels of
interlocking of the mass.
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Fig. 7 - Typical specimens failed due to sliding
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A rough estimate of the probable mode of failure jaihted rock mass under
unconfined state in the field can be made on theshaf test results presented in
Tables 2a and 2b as suggested in Table 3. It isvaex$ that the mass has two sets of
joints, out of which one is continuous and the pfiseat low, intermediate or high

level of interlocking as per the assessment ofstigator in the field.

Table 2a — Summary of modes of failure for typep&amens

Steppings
eo

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8
SHR+ |SHR+ SHR+

0 spL |spL SPL |SPL | SPL | SPL | SPL SpL
10 |ROT |SLD |SHR | SHR | SHR| SHR| SPL| SPL
SHR+ |SHR+ SPL+

20 |SLD |SLD | SLD SPL |spL SPL | SPL SHR
SLD+ SHR+

30 |SLD |SLD |SLD | SLD ROT SHR |SHR SPL
50 (SLD |SLD |SLD | SLD | SLD | SLD | SLD | SLD
60 |SLD |SLD |SLD | SLD | SLD | SLD | SLD | SLD
80 |ROT |ROT | ROT | ROT | ROT| ROT| ROT| ROT
SHR+ |SPL+ SPL+

90 SPL  |SHR SHR |SHR | SHR | SHR | SHR SHR

SPL-Splitting through the intact material; SHR-Sfve@ of the intact
material; ROT- Rotation; SLD-Sliding along the wal joints.

Table 2b - Summary of modes of failure for type<CBand D specimens

0° Type - B Type - C Type -D
s=0 s =4/8 s=0 s =4/8

0 SPL SPL SPL SPL SPL
10 SPL - -
20 SPL SLD SPL SLD SHR
30 SPL - -
40 SLD SLD SLD SLD SLD
50 SLD - -

60 - SLD SLD ROT SLD
70 ROT - - - -
80 ROT ROT ROT ROT ROT
90 SPL SPL SPL SPL SPL

117
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Table 3 - Guideline for assessing failure mode

Orientation and interlocking condition

Failure Mode

0=0to 10

Splitting/ shearing

0 = 10°, high interlocking

Splitting/ shearing

0 = 10°, intermediate interlocking

Shifting from shearing to sliding

0 = 10°, low / nil interlocking

Sliding

0 = 20°, high interlocking

Shearing

0 = 20°, intermediate interlocking

Shifting from shearing to sliding

8 = 0.8q, high interlocking

Shifting from shearing to sliding

8 = 0.8¢, other than high interlocking | Sliding

0=0.8pto 65 Sliding

0=651t075 Shifting from sliding to rotation
0=75to 85 Rotation

0 =85 to 90 Shifting from rotation to shearing

3.3  Strength vs. Deformation Behaviour

The axial stress in the test specimen was comployedpplying correction due to

change in the cross sectional area during loadihg.axial stress-deformation curves
for some of the specimens tested are presentei)ir8FThe curves are mostly in S
shape. For almost all cases of splitting, sheaand rotation, smooth curves were
obtained. In case of specimens failing due to mjjdalong the joints, stick slip

phenomenon was observed for some cases and themoweell-defined peak load.
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Fig. 8 - Axial stresswvdeformation curves for some specimens

The experimental results on strength, tangent nusgdhilure strain and Poisson’s
ratio are presented in Figs. 9 to 12 respectivEhe strength is taken as the peak
stress and the tangent modulus is computed by dgawangent to the stress-
deformation curve at 50% of peak stress. The stineaugd tangent modulus values are
shown as percent of the respective values for tintacdel material. Following
observation are made from these results:

« The mass behaves highly anisotropically in streraghwell as deformational
behaviour.

» The stepping increases the strength and tangentlo®ad the rang® < 30°. It
may be noted that this is the range of orientaitiowhich maximum variation in
failure mode is observed. The engineering behawbtine rock mass is therefore

correlated with the failure mode which in turn deg® on combination & and s.

« For 8 > 30, there is no substantial effect of stepping oergjth and tangent
modulus.

» Failure strains also behave anisotropically andahere mode dependent.

* The Poisson’s ratio for most of the specimens ismibto be higher than 0.5 and
ranging upto 2.79. In literature, Logters and Vagd®@74) have also reported for
actual rock mass tested by them in the field, #leevof Poisson's ratio as high as
2.77. The extremely high value of Poisson's rats \attributed by the authors to
opening of joints when they were near critical ot&ion. Under confined state
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the Poisson’s ratio is likely to reduce and bectess than 0.5 due to reduction in
shear stresses and sliding along the joints.

A detailed elaboration on how to assess the stneaigtl tangent modulus of the rock
mass in the field is presented in elsewhere (Saigt., 2002). The modelling of stress
vs strain or deformation is presented in the folfmparagraphs.

Fig. 9a - Values of strengtlog, %) for type-

A specimens
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4 MODELLING OF STRESS-DEFORMATION RESPONSE
4.1 Constitutive Model

An empirical approach to derive the stress-straimve without considering the
mechanics involved, has been given by Singh gt18B8). This approach was based
on experimental results and fitting of the besweuA slip based mechanistic model
as used by Huang et al. (1995) is developed here.

Consider a jointed mass under uniaxial loadinghwit’ numbers of joint sets in the
mass. The spacing of joints i get is ‘$ and the loading direction makes an argjle
with the normal to the joint plane (Fig. 13). Due dilation, the sliding is at an
inclination ‘i’ with the joint plane. The incremaitvalues of normal and shear
stressed\oy,; andAr;, corresponding to the elemental increase in agyslisees\o, on
one joint of the'] set will be:

Aoy = Ao coszej )
ATJ. =Acsin9j cosej (2)

For one joint, the corresponding incremental normsthear and dilatational
displacements respectively, will be

Ac... Ao j00529 j
Ad . = = 3)

VoK Ky

.= - = k

S
bk ]

4)
Addj :Adsj tani = Adsj)\ (5)

where k; and k;j are the normal and shear stiffnesses of the jeispectively and

depend upon on the level of normal stress actinthenoint plane and is dilatancy

factor = tan i.

For Axial Direction

The total displacement due to one joint in thedliom of loading is given as follows:

Adjz :Adnj cosej +Adsj smBj —Addj coszej
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cosze. sinze. A sing. co9.
= Adjz =ch cosé. L+ I J J (6)

J knj kSj ij

If the length of the block of jointed mass in thieedtion of loading is L, the total
displacement in the direction of loading, due tdta joints of {" set will be:

Ac. L cosze. sin29. A sinB. coso.
s(Ad. |=—) cos, I I I ) (7)
Iz S. Il k.. ) )
J nj SJ SJ

If E, is the Young’s modulus of the intact rock, thepthsement of the intact rock in
the direction loading will be

Ad. =—L (8)

Summing up the displacements of the joints andrtaet rock, the total displacement
of the jointed mass will be

Ao Ao cosze. sin2 ©. Asinb.coso.
ad, =22 L+S—Lcoszej b Ly > I J (9)
0 ] nj Sj S]

The incremental axial straike, due to all the joint sets is given as:

A m cos?0. | cos?h. sin?H. A sind.cosh.
A, =2%4n0 T Ly 1 L (10)
Z Eq j=1 S. K . K_. K_.
J nj S S

The equivalent deformation modulus of the jointedss is given by the following
expression.

m cos?0. | cos?0. sin0. Asing. cosd.
1_1,5 J PR D N (11)

S. K . K . K .
=1 7 nj sj sj

For Lateral Direction

Total displacement due to one joint in direction X:
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Adjx :Adnjsmej —Adsj cosej —Addjsmej

cod. cod. Asind.

= Ad. =Ac.cosO. sind. I I J (12)
JX J J I k.. k . k .
nj SJ S

Total dsiplacement due to all joints Bfget in direction X is given by

Acchosze.sinej cosej cosﬁj Asind .

- J J

Ad. )= - - 13

Z JX) S. K . K . Ke: (13)
J nj S S

Strain in X direction due to lateral expansion ofact rock isvo(Ao/Ey). The
displacement due to one joint set, in transvensetion X is

VoAG AcchoszejsinHj cosaj cosé’j Asing .

B ¥ . S

5o Sj k nj ksj ksj

where B is the dimension of the specimen in X diogc

The strain in direction X, due to all the jointsetill be

) VoAG AL M coszejsinej cosaj cosej _xSinej
Aey = + > - (24)
Eo B =1 S. K. . k . k

] nj Sj S]
4.2 Normal Stiffness

The normal stiffness of the joints was determinedhie laboratory by loading them
normal to their planes and then plotting the norstedéss against the closure of the
single joint. The bricks were cut into square @até 2.5 cm thickness each. A set of
six such plates kept one above the other was mdard load was applied normal to
the joints. The stress vs. deformation curve o #yistem up to failure was observed.
The deformation of the intact material was sub&ddb get the deformation of the
joints. This deformation was divided by numberahjs to get stress vs. deformation
behaviour of the single joint (Fig. 14). It is obsed that the stress required to cause
unit closure increases exponentially with incregsieformation. A best fitting power
law was used to describe the relation between oh@al stress and the closure of the
joint as follows.

on = 253.14%)*% (15)
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Fig.14 - Normal stress-deformation behaviour o§knoint

By differentiatingo,, with respect t®, the following expression was obtained for the
normal stiffness.

kn = 24.25,>**MPa/mm (16)
whereay, is normal stress in MPa adds normal closure of the joint in mm.
4.3  Shear Stiffness

The shear stiffness of the joints was determineddmducting direct shear tests on the
joint surface and plotting shear stress againsstiear deformation. Some researchers
propose to use a constant value of the shear edgfrfHuang et al., 1995). Singh
(2000) however observed that the shear stiffneses/avith the level of applied
stresses and proposed a model to account for thatiga in the shear stiffness
depending on the level of the applied stress (Fig. This model is used to compute
the shear stiffness in this study. As per this rhtfiek; is assumed as follows:

(i) for 0<0<0.250; ks=linearly varying from O t0 dfnax
(i) for 0.750¢ <0 <0, ks= linearly varying from Knaxto O.

whereag = applied stress at failure under uniaxial loadoagdition. The value of
ksmax fOr the joints in this study was observed t®@E886 MPa/mm.
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ks/ksmax
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Fig.15 - Model for variation ofdwith uniaxial stress (Singh, 2000)
4.4  Applicability of the Model

The constitutive equations suggested above areledppd the experimental data
obtained from the testing programme. Following #re input parameters for the
model;

E, = 5344 MPa;v =0.19; L= b =150mm; ska= 0.5886 MPa/mm;
kn = 24.26,>* MPa/mm

A computer programme was used to apply the mode. grogramme uses, up to the
failure load, the incremental increase in appliedhxial loading and computes the
incremental deformations in Z and X directions émel incremental modulus at each
step. Following sequence of computations is adopted

. Read input data i.e. failure strass E,, v, L, b, number of joint sets and .

. For each joint set read orientatiBnspacing Sand the first trail value of.

. Compute incremental stress = 1/20 of the failuresst

. Apply incremental load and compute incrementalissrAs, andAg,.

. For each incremental increase in loading, comprigent modulus &= Ac/Ag,.
Record the value of Fcorresponding to the applied stress equal to dfathe
failure stress. Compare this modulus with experialeralue.

. Choose another trial value &f and repeat the steps (iv) and (v) till the
experimental value of Anatches with the experimental result.

The values of dilatancy factaor giving best promising tangent modulus values are
presented in Table 4. Following observations arderfeom this table.
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Table 4-Dilatancy factoi predicting closest tangent modulus

Stepping s
0 1/8 2/8 3/8 4/8 5/8 6/8 7/8
10 | 0.206| 0.29| 0.358 0.355@.367 | 0.37320.3794|0.3746
20| -1.41 -0.8| 0.564 0.5804.6164|0.5655| 0.5685| 0.582
30 | -1.88| -2.15| 0.18] -0.13 0.7288.8135| 0.643| 0.638

50 | 0.0015 -7.2 -8.0 | -10.5| -9.5 -4.3 -6.0 -4.6
80 | 0.2062 0.2245| 0.103 | 0.2568 0.2808| 0.1138| 0.0925| 0.2445

90
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Fig. 16 - Variation of optimal with Fig. 17 - Variation of optimal with
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441 For 6=10°

It can be seen from Table 3, that most of the waloleA giving matching E lie
between 0.206 and 0.3794. The variation afith stepping is shown in Fig. 16; it is
seen thah gradually increases from 0.206 (s = 0) to 0.33&(a 2/8) and after that
remains almost constarit € 0.37).

442 For 8= 20°

For s =0 and s = 1/8, the values\ab predict matching tangent modulus are negative
(Fig. 17). We consider these negative values toubeealistic as they indicate
contraction of the jointed mass at failure. Foipptag, s= 2/8, there is not much
variation in the value ok. An average value 0.58 can be conveniently usguiedict

the modulus value close to those obtained expetatignlt is interesting to note that

s = 0 and s = 1/8 represent cases of pure slididgagpossible explanation is given in
subsequent discussion with other cases of slidiodem
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443 For 8=30°

For s = 0 to 3/8 (except 2/8), all optimal valuéa @re negative. For s = 4/8, 5/8, 6/8
and 7/8 the values are positive. The variationAofs shown in Fig. 18. These
orientations exhibit the shearing mode of failureaatransition between sliding and

shearing. An average valuefor non-sliding cases may be taken as 0.71.

444 For 8= 50°and 60°

All the optimal values ol are negative. The continuous joint set is incliagééngle
more than friction angle of jointsg(= 37°). From mechanics point of view the
specimens should fail due to their own weight. Aaliretrength however is indicated
by the experimental results. The reason for thiength is that after some
deformation, the blocks introduce some kind ofrioieking that gives rise to apparent
cohesion and some strength is shown by the masseXjerimental results in fact are
more indicative of the residual strength rathemthiae peak strength of the mass.
Singh (2005) also observed during back analysisome slopes that the cohesion
increased with deformation. The constitutive madets present form can not model
these cases of residual strength.

445 For 8=80°

For @ = 8(, the optimal fluctuates between 0.0925 and 0.2825 (Fig. 19r&is no

trend of theA values with the stepping. The failure mode forsthepecimens was
rotation.

446 For §=0°and90°

The basic assumption in the development of thetitatige model used here is that,

there should be some slip along the joints. Fer0°, only the closure can take place
and the dilation does not affect the result asilit ave no component contributing
axial strain. A constant value of the modulus wicated for all the steppings, which

is far less than the average value obtained expatmly. Similarly, for6 = 9C,
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neither slip nor dilation is going to occur. Thedrbin its present form therefore does
not explain the behaviour of these orientationsessfully.

5 CONCLUSIONS

For many civil engineering projects, the foundadioast on rocks at shallow depth.
The rocks encountered are seldom intact and hae®mlinuities, most common of

which are the joints. The assessment of the stnesugl deformability of such jointed

rocks is always a challenging job before the demsignThe behaviour is further

complicated due to variety of modes of failure tbah occur in unconfined state of
jointed rocks. The present experimental programae lbeen aimed to have better
understanding of occurrence of different mode dtifa and their influence on the

deformability of the mass under unconfined statee Btudy shows four distinct

possible failure modes for jointed mass, i.e. 8pt of intact material, shearing of

intact material, rotation of blocks and slidingradahe critical joints.

The expressions for a constitutive model have lseggested based on the slip along
the joint surfaces. The model can be used for rhasgg any number of continuous
joint sets at variable orientations. The effectittion and variability of the normal
and tangential stiffnesses, on the deformabilityhef mass in longitudinal as well as
in lateral directions can be studied through thigled.

Following conclusions are drawn from the study.

. Contrary to popular belief, the Poisson’s ratidha# dialatant jointed rock mass
under uniaxial loading condition, is found to bensistently more than 0.5 for
majority of the cases. This is due to opening aftppunder very low normal
stresses.

. A jointed rock mass having a single joint set &taal orientation @ = 45°+@/2)
fails under its own weight. However if there areresn¢han one joint sets, the
corners of the blocks in the mass introduce sonterlotking leading to
apparent cohesion. The mass therefore has sonmgtstreven if the joints are
critically oriented.

. Four distinct failure modes, i.e. splitting, shegti rotation and sliding are
possible for a jointed rock mass under uniaxiadliog conditions.

. The failure mode depends on the orientation oftgoimith loading direction and
interlocking of the mass. Assessment of the prabddilure mode is possible
based on the mapping of joints in the field and jtltdgement of the engineer
about the interlocking of the mass.

. The deformational behaviour of the mass, whenils fdue to sliding, shearing
or splitting in the range @ 6 < ¢, can best be modelled through the slip based

constitutive model suggested in the study. Thesate = 0° and 90 cannot be
modelled by the model in its present form.

. The dilatancy factorA’, can model the extent of interlocking of the massr
the range 0 &< @, A has specific trend and is related with the failnede.
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