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ABSTRACT 
 
Many of the engineering structures like foundations of bridge piers, towers and dams 
are located at shallow depth. The jointed rock mass beneath such near surface 
structures deforms under unconfined stress conditions. Joints, the most commonly 
occurring discontinuities, dominate the engineering response of the mass, as the 
normal stress acting on the joints is very low. Jointed rock mass fails in several modes 
and dilation occurs due to roughness and interlocking of the joints. Understanding of 
the failure mechanism of the mass and the modelling of the stress-deformation 
behaviour is necessary for reliable analysis and design of the structures in such rock 
masses. An extensive experimental programme was planned and executed on 
specimens of jointed mass with varying degree of interlocking, orientation and the 
geometry of the joints. The tests were performed under unconfined state to allow the 
dilation and also to allow specimen freely adopt the failure mode. The paper discusses 
the details of the experimental programme and some of the results obtained. The 
Poisson’s ratio of the rock under uniaxial loading condition is observed to be 
consistently more than 0.5 for most of the cases. A constitutive model is suggested to 
explain the stress-deformation behaviour. The model is based on the normal and shear 
stiffnesses of the joints. The stiffnesses are treated to be varying with normal stress. 
The applicability of the constitutive model to the results of the experimental 
programme is also discussed. 
 
Key words: Jointed rock mass, normal and shear stiffness, deformation, constitutive 
model. 
 
 
1 INTRODUCTION   

 
The rock masses encountered in civil and mining engineering projects are invariably 
jointed. Under unconfined or low confining pressure condition, the deformability of 
these masses is governed by both the properties of the joints and the intact rock 
material. The important properties of the joints affecting the mass behaviour are their 
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shear strength including dilation, stiffness, orientation, frequency and interlocking 
conditions. The analytical studies on these aspects have been conducted by many 
researchers in the past e.g. Goodman (1976), Goodman et al. (1968), Hart et al.(1988) 
and Shi (1988). The “Equivalent Continuum Material” approach has been found to be 
more convenient for the masses, which are highly fractured. The approach has been 
used by several investigators e.g. Gerrard (1982), Yoshinaka and Yamabe (1986), 
Huang et al. (1995), Singh (2000) and Li (2001). The closed form expressions for the 
equivalent deformation modulus have been given by Huang et al. (1995) and Li 
(2001). The expressions for constitutive equations by Huang et al. (1995) were 
derived for three sets of joints with two dominating sets symmetrically oriented about 
the direction of loading. However, Li (2001) derived the equations for one set of joints 
and neglected the dilation. 
 
In the present study, an experimental programme was executed wherein jointed 
specimens simulating a jointed rock mass were tested under variable conditions of 
orientation and interlocking of joints (Singh, 1997). The specimens have been tested 
under uniaxial compression exhibiting typical modes of failure occurring in nature. 
The expressions for constitutive equations have been derived to compute the tangent 
modulus and lateral deformation of the jointed mass. The expressions take into 
account more than one set of joints at any arbitrary orientation and the effect of the 
dilation is considered through a dilatancy factor. The normal and shear stiffnesses 
used in the constitutive equations are treated to be varying with applied stress level. 
The applicability of the constitutive equations to the experimental results is also 
discussed in the study.  
 
1.1 Earlier Model Studies on Jointed Rocks and Scope of Study 
 
One of the best ways to investigate the mechanism of failure of jointed rocks is to 
conduct physical model study. The failure modes are found to have great influence on 
the response of the mass (Singh et al., 1997). The earlier studies have been conducted 
under direct shear, uniaxial, and triaxial stress conditions and some of these have been 
by Goldstein et al. (1966), Hayashi (1966), Brown (1970a, 1970b), Brown and 
Trollope (1970), Ladanyi and Archambault (1972), Einstein and Hirschfeld (1973), 
Lama (1974), Yaji (1984), Arora (1987), Roy (1993), and Yang and Huang (1995). 
Very few of these studies were conducted under the uniaxial stress conditions; rest 
were a part of experimental programme mainly directed towards confined conditions. 
Moreover, most of these studies have not been conducted on scale free jointed mass. 
The mass can be considered scale free, if it has more than about 150 blocks or at least 
5 elements in each direction. These investigations are as such not adequate to 
understand the failure mechanism of mass under unconfined state where joints act 
under very low normal stress and the dilation plays an important role. The present 
study has therefore, been directed to study the strength and deformational behaviour 
of scale free jointed mass under unconfined condition. 
 
2 EXPERIMENTAL PROGRAMME 
 
Keeping the above points under consideration, the following specific experimental 
studies were planned and executed on the sand-lime brick model material: 
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(i) Tests were performed on specimens of jointed rock mass under unconfined 
conditions. A rock like model material (sand-lime brick) was used to simulate 
the weak rock. The specimens had at least six elements in each direction to 
behave free of scale effects. 

(ii)  The specimens had three sets of intersecting orthogonal joints (Fig. 1). The joint 
Set-I was continuous and the joints in this set were inclined at angles θ with the 
horizontal. The orientation θ was varied from 0° to 90°. 

(iii)  The joint set-II was orthogonal to joint set-I and stepped at variable stepping ‘s’. 
For each orientation, the stepping was varied from 0 to 7/8 of the width of the 
block at small intervals. The variation of stepping introduces changes in 
interlocking conditions. The joint set-III was always kept vertical (Type-A 
specimens, Fig. 1). 

 

 
Fig. 1 - Configuration of various specimen with the joint sets 
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(iv) A few tests were also planned with changed geometry of blocks forming the 
specimens for selected orientations and steppings (Types B, C and D specimens, 
Fig. 1). 

(v) Platens of size 15cm x 15cm were used at the top and the bottom of the 
specimen to distribute load uniformly. 

(vi) Sandwiches of Teflon sheets smeared with silicon grease were used at the top 
and the bottom of the specimen to ensure friction free end loading system. 
Horizontal and vertical deformations were recorded with incremental load. The 
mode of failure of each specimen was recorded after the test. 

 
3 RESULTS AND DISCUSSIONS 

 
3.1 Model Material 
 
The physical and engineering properties of the intact material are presented in Table 1. 
The average uniaxial compressive strength, σci, of the sand-lime brick material is 
17.13 MPa. The ratio of uniaxial compression to tensile strength for the present 
material is 6.8. The stress-strain curve for the intact material is presented in Fig. 2; the 
curve is elastic-plastic in nature with the failure strain about 0.5%. The tangent 
modulus Ei at 50% of failure stress is 5344 MPa. The modulus ratio (Ei/σci) of the 
material is 312 and on Deere-Miller (1966) classification chart the material is 
classified as ‘EM’.  
 

Table 1- Physical and engineering properties of model material 

Property Value 
Dry density, γd(kN/m3) 16.86 
Porosity (%) 36.94 
UCS, σci (MPa) 17.13 
Brazilian strength,σti (MPa)  2.49 
Tangent modulus, Ei (GPa) 5.34 
Poisson’s ratio, νo   0.19 
Cohesion, ci (MPa) 4.67 
Friction angle of intact material, φi° 33.00 
Friction angle along the Joints, φj° 37.00 
Deere-Miller classification (1966) EM 

 
The Mohr-Coulomb parameters ci and φi for the intact material were determined by 
conducting triaxial shear strength tests under σ3 = 0.98, 1.82, 2.89 and 4.07 MPa. The 
Mohr envelope for the intact material is presented in Fig. 3. The specimens failed in 
brittle manner under uniaxial loading and showed ductility with increase in confining 
pressure. The XRD analysis of the material indicated 64% Quartz, 14% Calcite, 11% 
Mica and 5.5% of Kaolinite and Feldspars each. 
 
3.2 Modes of Failure of the Jointed Mass 
 
The modes of failure of the jointed mass were very complex. There was always a 
combination of more than one failure mechanisms and single mode of failure was 
rarely found solely responsible for the entire failure. It was however, possible to 
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identify the most dominating mode initiating the failure of the specimen. Out of all 
combinations available, four distinct modes were identified as (i) splitting by vertical 
fracture planes passing through intact material, (ii) shearing through intact material, 
(iii) rotation of blocks and (iv) sliding along the critical joint planes. The typical 
specimens failed due to different modes are shown in Figs. 4 to 7.  
 

 
Fig. 2 - Stress-strain curve for intact model material 

 

 
Fig. 3 - Mohr envelopes for the intact model material 

 
3.2.1 Observations on modes of failure 
 
The summary of failure modes occurring for various combinations of stepping and 
orientation for type-A specimens is presented in Table 2a. The modes of failure 
observed for Types-B, C and D specimens confirm to Table 2b. It is observed that a 
particular mode of failure lies in specific range of orientation of continuous joints and 
stepping. The shifting of mode from sliding to shearing and splitting for low θ values 
indicate that the various steppings used in this study correspond to different levels of 
interlocking of the mass.  
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Fig. 4 - Typical specimens failed due to splitting 

 
Fig. 5 - Typical specimens failed due to shearing 

 
Fig. 6 - Typical specimens failed due to rotation 

 
Fig. 7 - Typical specimens failed due to sliding 
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A rough estimate of the probable mode of failure of jointed rock mass under 
unconfined state in the field can be made on the basis of test results presented in 
Tables 2a and 2b as suggested in Table 3. It is assumed that the mass has two sets of 
joints, out of which one is continuous and the other is at low, intermediate or high 
level of interlocking as per the assessment of investigator in the field. 
 

Table 2a – Summary of modes of failure for type-A specimens 

Steppings 
θ° 

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 

0 SHR+ 
SPL 

SHR+ 
SPL 

SPL SPL SPL SPL SPL SHR+ 
SPL 

10 ROT SLD SHR SHR SHR SHR SPL SPL 

20 SLD SLD SLD SHR+ 
SPL 

SHR+ 
SPL 

SPL SPL SPL+ 
SHR 

30 SLD SLD SLD SLD SLD+ 
ROT SHR SHR SHR+ 

SPL 

40 --- --- --- --- --- --- --- --- 

50 SLD SLD SLD SLD SLD SLD SLD SLD 

60 SLD SLD SLD SLD SLD SLD SLD SLD 

70 --- --- --- --- --- --- --- --- 

80 ROT ROT ROT ROT ROT ROT ROT ROT 

90 SHR+ 
SPL 

SPL+ 
SHR SHR SHR SHR SHR SHR SPL+ 

SHR 
SPL-Splitting through the intact material; SHR-Shearing of the intact 
material; ROT- Rotation; SLD-Sliding along the critical joints. 

 
 

Table 2b - Summary of modes of failure for types B, C and D specimens 

Type - C Type - D θ° Type - B 

s = 0 s = 4/8 s = 0 s = 4/8 

0 SPL SPL SPL SPL SPL 
10 SPL - - - - 
20 SPL SLD SPL SLD SHR 
30 SPL - - - - 
40 SLD SLD SLD SLD SLD 
50 SLD - - - - 
60 - SLD SLD ROT SLD 
70 ROT - - - - 
80 ROT ROT ROT ROT ROT 
90 SPL SPL SPL SPL SPL 

 



J. OF ROCK MECHANICS AND TUNNELLING TECH. VOL.11 NO.2, 2005 118 

Table 3 - Guideline for assessing failure mode 

Orientation and interlocking condition Failure Mode 

θ = 0 to 10° Splitting/ shearing 
θ ≈ 10°, high interlocking  Splitting/ shearing 
θ ≈ 10°, intermediate interlocking Shifting from shearing to sliding 
θ ≈ 10°, low / nil interlocking Sliding 
θ ≈ 20°, high interlocking Shearing 
θ ≈ 20°, intermediate interlocking Shifting from shearing to sliding 
θ ≈ 0.8 φj, high interlocking Shifting from shearing to sliding 
θ ≈ 0.8 φj, other than high interlocking Sliding 
θ ≈ 0.8φj to 65° Sliding 
θ ≈ 65° to 75°   Shifting from sliding to rotation 
θ ≈ 75° to 85°   Rotation  
θ ≈ 85° to 90°   Shifting from rotation to shearing  

 
3.3 Strength vs. Deformation Behaviour 
 
The axial stress in the test specimen was computed by applying correction due to 
change in the cross sectional area during loading. The axial stress-deformation curves 
for some of the specimens tested are presented in Fig. 8. The curves are mostly in S 
shape. For almost all cases of splitting, shearing and rotation, smooth curves were 
obtained. In case of specimens failing due to sliding along the joints, stick slip 
phenomenon was observed for some cases and there was no well-defined peak load. 
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Fig. 8 - Axial stress vs deformation curves for some specimens 

 
The experimental results on strength, tangent modulus, failure strain and Poisson’s 
ratio are presented in Figs. 9 to 12 respectively. The strength is taken as the peak 
stress and the tangent modulus is computed by drawing tangent to the stress-
deformation curve at 50% of peak stress. The strength and tangent modulus values are 
shown as percent of the respective values for intact model material. Following 
observation are made from these results: 
 
• The mass behaves highly anisotropically in strength as well as deformational 

behaviour. 

• The stepping increases the strength and tangent modulus in the range θ ≤ 30°. It 
may be noted that this is the range of orientation in which maximum variation in 
failure mode is observed. The engineering behaviour of the rock mass is therefore 
correlated with the failure mode which in turn depends on combination of θ and s. 

• For θ > 30°, there is no substantial effect of stepping on strength and tangent 
modulus. 

• Failure strains also behave anisotropically and are failure mode dependent. 

• The Poisson’s ratio for most of the specimens is found to be higher than 0.5 and 
ranging upto 2.79. In literature, Lögters and Voort (1974) have also reported for 
actual rock mass tested by them in the field, the value of Poisson's ratio as high as 
2.77. The extremely high value of Poisson's ratio was attributed by the authors to 
opening of joints when they were near critical orientation. Under confined state 
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the Poisson’s ratio is likely to reduce and become less than 0.5 due to reduction in 
shear stresses and sliding along the joints. 

 
A detailed elaboration on how to assess the strength and tangent modulus of the rock 
mass in the field is presented in elsewhere (Singh et al., 2002). The modelling of stress 
vs strain or deformation is presented in the following paragraphs. 
 
 

 

0

20

40

60

80

0 30 60 90

θo

cr
, %

s = 0

s = 1/8

s = 2/8

s = 3/8

s = 4/8

s = 5/8

s = 6/8

s= 7/8

Type-A

 

0

20

40

60

80

0 15 30 45 60 75 90

θo

cr
, %

Type-B

Type-C,  s=0

Type-C,  s=4/8

Type-D,  s=0

Type-D,  s=4/8

 
Fig. 9a - Values of strength (σcr, %) for type-

A specimens 
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Fig.11a - Failure strains in axial direction 

for type- A specimens 
Fig.11b - Failure strains in axial direction 
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Fig.13 - A jointed mass with single dilatant joint 
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4 MODELLING OF STRESS-DEFORMATION RESPONSE 
 

4.1 Constitutive Model 
 
An empirical approach to derive the stress-strain curve without considering the 
mechanics involved, has been given by Singh et al. (1998). This approach was based 
on experimental results and fitting of the best curve. A slip based mechanistic model 
as used by Huang et al. (1995) is developed here.  
 
Consider a jointed mass under uniaxial loading, with ‘m’ numbers of joint sets in the 
mass. The spacing of joints in jth set is ‘Sj’ and the loading direction makes an angle θj 
with the normal to the joint plane (Fig. 13). Due to dilation, the sliding is at an 
inclination ‘i’ with the joint plane. The incremental values of normal and shear 
stresses ∆σnj and ∆τj, corresponding to the elemental increase in applied stress ∆σ, on 
one joint of the jth set will be: 
 

j
θ

2cos ∆σnj∆σ =         (1) 

 

j
cosθ

j
sinσ 

j
∆ θ∆=τ         (2) 

  
For one joint, the corresponding incremental normal, shear and dilatational 
displacements respectively, will be 

 

njk

jθ
2cos j∆σ

njk

nj∆σ

nj∆d ==        (3) 

 

sjk

cosθ  sinθ  ∆σ

sjk

∆τ

sj∆d
jjjj ==       (4) 

 
λ==  sj∆d   i tan sj∆ddj∆d        (5) 

 
where knj and ksj are the normal and shear stiffnesses of the joint respectively and 
depend upon on the level of normal stress acting on the joint plane and λ is dilatancy 
factor = tan i. 
 
For Axial Direction 
 
The total displacement due to one joint in the direction of loading is given as follows: 

   

jθcosdj∆d -jsinθ sj∆djcosθnj∆djz∆d +=  

 



MAHENDRA SINGH & SESHAGIRI RAO–PHYSICAL AND CONSTITUTIVE MODELLING 
 

123 

















−+=⇒

sjk

j
cosθ

j
sinλ

sj
k

j
θ

2sin

nj
k

j
θ

2cos

j
 cos 

j
∆σ

jz
∆d

θ
θ   (6) 

 
If the length of the block of jointed mass in the direction of loading is L, the total 
displacement in the direction of loading, due to all the joints of jth set will be: 

 

∑














 θθλ
−

θ
+=








sjk

j
cos

j
sin

sj
k

j
2sin

nj
k

j
θ

2cos
 

j
θ

2cos
j

S

L 
j

∆σ

jz
∆d   (7) 

 
If Eo is the Young’s modulus of the intact rock, the displacement of the intact rock in 
the direction loading will be 

 

L

o
E

∆σ

i∆d =          (8) 

 
Summing up the displacements of the joints and the intact rock, the total displacement 
of the jointed mass will be 

 















 θθλ
−

θ
++=

sjk
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j
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k
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nj
k
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θ

2cos

j
θ

2cos L 
j

S

∆σ
L  

oE

∆σ
 

z
∆d           (9) 

 
The incremental axial strain ∆εz due to all the joint sets is given as: 

 

∑
= 















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θ
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j
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j
θ
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oE
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z
∆

λθ
σε  (10) 

 
 The equivalent deformation modulus of the jointed mass is given by the following 
expression. 

 

 ∑
= 














 λ
−++=

m

1j sj
k
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θcos

j
θsin

sj
k

j
θ

2sin

nj
k

j
θ

2cos

j
S

j
θ

2cos

oE

1

zE

1
  (11) 

 
For Lateral Direction 
 
Total displacement due to one joint in direction X: 
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jθsindjd jθ cos sj∆djθsin nj∆djx∆d ∆−−=  
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 λ
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sinθ
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θ cos 

j
∆σ
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∆d    (12) 

 
Total dsiplacement due to all joints of jth set in direction X is given by 

 













 λ
−−=∑ ∆

sjk

j
sinθ

sj
k

j
cosθ

nj
k
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j

S
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j
θ

2 cos L ∆σ
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Strain in X direction due to lateral expansion of intact rock is νo(∆σ/Eo). The 
displacement due to one joint set, in transverse direction X is  

 














−+

sjk

jsinθλ

 
sj
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cos
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jcosθ
  

 jS
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o
E
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o
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 B 
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where B is the dimension of the specimen in X direction. 
 
The strain in direction X, due to all the joint sets will be 

 


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


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      x∆ε

θθ
    (14) 

 
4.2 Normal Stiffness 

 
The normal stiffness of the joints was determined in the laboratory by loading them 
normal to their planes and then plotting the normal stress against the closure of the 
single joint. The bricks were cut into square plates of 2.5 cm thickness each. A set of 
six such plates kept one above the other was prepared and load was applied normal to 
the joints. The stress vs. deformation curve of this system up to failure was observed. 
The deformation of the intact material was subtracted to get the deformation of the 
joints. This deformation was divided by number of joints to get stress vs. deformation 
behaviour of the single joint (Fig. 14). It is observed that the stress required to cause 
unit closure increases exponentially with increasing deformation. A best fitting power 
law was used to describe the relation between the normal stress and the closure of the 
joint as follows. 
 

 σn  =  253.14(δ)2.36        (15) 
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Fig.14 - Normal stress-deformation behaviour of single joint 

 
By differentiating σn with respect to δ, the following expression was obtained for the 
normal stiffness. 

 
kn = 24.27σn

0.42 MPa/mm       (16) 
 
where σn is normal stress in MPa and δ is normal closure of the joint in mm. 
 
4.3 Shear Stiffness 

 
The shear stiffness of the joints was determined by conducting direct shear tests on the 
joint surface and plotting shear stress against the shear deformation. Some researchers 
propose to use a constant value of the shear stiffness (Huang et al., 1995). Singh 
(2000) however observed that the shear stiffness varies with the level of applied 
stresses and proposed a model to account for the variation in the shear stiffness 
depending on the level of the applied stress (Fig. 15). This model is used to compute 
the shear stiffness in this study. As per this model the ks is assumed as follows: 
 
(i) for 0≤σ ≤ 0.25 σcj ;  ks =linearly varying from 0 to ksmax, 
(ii) for 0.25σcj  ≤σ  ≤ 0.75 σcj;   ks = ksmax, and 
(iii) for  0.75σcj  ≤σ  ≤ σcj;  ks= linearly varying from ksmax to 0. 
 
where σcj = applied stress at failure under uniaxial loading condition. The value of 
ksmax  for the joints in this study  was observed to be 0.5886 MPa/mm. 
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Fig.15 - Model for variation of ks with uniaxial stress (Singh, 2000) 

 
4.4 Applicability of the Model 
 
The constitutive equations suggested above are applied to the experimental data 
obtained from the testing programme. Following are the input parameters for the 
model; 
 

Eo = 5344 MPa;  ν = 0.19;   L =  b = 150mm;   ksmax = 0.5886 MPa/mm;  
kn = 24.27σn

0.42 MPa/mm 
 
A computer programme was used to apply the model. The programme uses, up to the 
failure load, the incremental increase in applied uniaxial loading and computes the 
incremental deformations in Z and X directions and the incremental modulus at each 
step. Following sequence of computations is adopted. 
 
• Read input data i.e. failure stress σ1, Eo, ν, L, b, number of joint sets and ksmax. 
• For each joint set read orientation θj, spacing Sj and the first trail value of λ. 
• Compute incremental stress = 1/20 of the failure stress. 
• Apply incremental load and compute incremental strains ∆εz and ∆εx.  
• For each incremental increase in loading, compute tangent modulus Ez = ∆σ/∆εz. 

Record the value of Ez corresponding to the applied stress equal to half of the 
failure stress. Compare this modulus with experimental value. 

• Choose another trial value of λ and repeat the steps (iv) and (v) till the 
experimental value of Ez matches with the experimental result.  

 
The values of dilatancy factor λ giving best promising tangent modulus values are 
presented in Table 4. Following observations are made from this table. 
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Table 4- Dilatancy factor λ predicting closest tangent modulus 

Stepping s 
θ° 

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 

10 0.206 0.29 0.358 0.3556 0.367 0.3732 0.3794 0.3746 

20 -1.41 -0.8 0.564 0.5804 0.6164 0.5655 0.5685 0.582 

30 -1.88 -2.15 0.18 -0.13 0.7285 0.8135 0.643 0.638 

50 0.0015 -7.2 -8.0 -10.5 -9.5 -4.3 -6.0 -4.6 

80 0.2062 0.2245 0.103 0.2568 0.2808 0.1138 0.0925 0.2445 
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Fig. 16 - Variation of optimal λ with 
stepping for θ = 10° 

Fig. 17 - Variation of optimal λ with 
stepping for θ = 20° 

 
4.4.1 For  θ = 10o 
 
It can be seen from Table 3, that most of the values of λ giving matching Ez lie 
between 0.206 and 0.3794. The variation of λ with stepping is shown in Fig. 16; it is 
seen that λ gradually increases from 0.206 (s = 0) to 0.358 (at s = 2/8) and after that 
remains almost constant (λ ≈ 0.37). 
 
4.4.2 For θ = 20°  
 
For s = 0 and s = 1/8, the values of λ to predict matching tangent modulus are negative 
(Fig. 17). We consider these negative values to be unrealistic as they indicate 
contraction of the jointed mass at failure. For stepping, s ≥ 2/8, there is not much 
variation in the value of λ. An average value 0.58 can be conveniently used to predict 
the modulus value close to those obtained experimentally. It is interesting to note that 
s = 0 and s = 1/8 represent cases of pure sliding and a possible explanation is given in 
subsequent discussion with other cases of sliding mode. 
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Fig. 18 - Variation of optimal λ with 

stepping for θ = 30° 
Fig. 19 - Variation of optimal λ with 

stepping for θ = 80° 
 
4.4.3 For θ = 30° 
 
For s = 0 to 3/8 (except 2/8), all optimal values of λ are negative. For s = 4/8, 5/8, 6/8 
and 7/8 the values are positive. The variation of λ is shown in Fig. 18. These 
orientations exhibit the shearing mode of failure or a transition between sliding and 
shearing. An average value of λ for non-sliding cases may be taken as 0.71. 
 
4.4.4 For θ = 50° and 60° 
 
All the optimal values of λ are negative. The continuous joint set is inclined at angle 
more than friction angle of joints (φj = 37o). From mechanics point of view the 
specimens should fail due to their own weight. A small strength however is indicated 
by the experimental results. The reason for this strength is that after some 
deformation, the blocks introduce some kind of interlocking that gives rise to apparent 
cohesion and some strength is shown by the mass. The experimental results in fact are 
more indicative of the residual strength rather than the peak strength of the mass. 
Singh (2005) also observed during back analysis in some slopes that the cohesion 
increased with deformation. The constitutive model in its present form can not model 
these cases of residual strength. 
 
4.4.5 For θ = 80° 
 
For θ = 80°, the optimal λ fluctuates between 0.0925 and 0.2825 (Fig. 19). There is no 
trend of the λ values with the stepping. The failure mode for these specimens was 
rotation. 
 
4.4.6 For θ = 0° and 90° 
 
The basic assumption in the development of the constitutive model used here is that, 
there should be some slip along the joints. For θ = 0°, only the closure can take place 
and the dilation does not affect the result as it will have no component contributing 
axial strain. A constant value of the modulus is indicated for all the steppings, which 
is far less than the average value obtained experimentally. Similarly, for θ = 90°, 
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neither slip nor dilation is going to occur. The model in its present form therefore does 
not explain the behaviour of these orientations successfully. 
 
5 CONCLUSIONS 
 
For many civil engineering projects, the foundations rest on rocks at shallow depth. 
The rocks encountered are seldom intact and have discontinuities, most common of 
which are the joints. The assessment of the strength and deformability of such jointed 
rocks is always a challenging job before the designers. The behaviour is further 
complicated due to variety of modes of failure that can occur in unconfined state of 
jointed rocks. The present experimental programme has been aimed to have better 
understanding of occurrence of different mode of failure and their influence on the 
deformability of the mass under unconfined state. The study shows four distinct 
possible failure modes for jointed mass, i.e. splitting of intact material, shearing of 
intact material, rotation of blocks and sliding along the critical joints. 
 
The expressions for a constitutive model have been suggested based on the slip along 
the joint surfaces. The model can be used for mass having any number of continuous 
joint sets at variable orientations. The effect of dilation and variability of the normal 
and tangential stiffnesses, on the deformability of the mass in longitudinal as well as 
in lateral directions can be studied through this model.  
 
Following conclusions are drawn from the study. 
 
• Contrary to popular belief, the Poisson’s ratio of the dialatant jointed rock mass 

under uniaxial loading condition, is found to be consistently more than 0.5 for 
majority of the cases. This is due to opening of joints under very low normal 
stresses.  

• A jointed rock mass having a single joint set at critical orientation (θ ≈ 45°+φj/2) 
fails under its own weight. However if there are more than one joint sets, the 
corners of the blocks in the mass introduce some interlocking leading to 
apparent cohesion. The mass therefore has some strength even if the joints are 
critically oriented.   

• Four distinct failure modes, i.e. splitting, shearing, rotation and sliding are 
possible for a jointed rock mass under uniaxial loading conditions. 

• The failure mode depends on the orientation of joints with loading direction and 
interlocking of the mass. Assessment of the probable failure mode is possible 
based on the mapping of joints in the field and the judgement of the engineer 
about the interlocking of the mass.  

• The deformational behaviour of the mass, when it fails due to sliding, shearing 
or splitting in the range 0 < θ < φj, can best be modelled through the slip based 
constitutive model suggested in the study. The cases of θ = 0° and 90° cannot be 
modelled by the model in its present form. 

• The dilatancy factor ‘λ’, can model the extent of interlocking of the mass. For 
the range 0 <θ < φj, λ has specific trend and is related with the failure mode. 

  



J. OF ROCK MECHANICS AND TUNNELLING TECH. VOL.11 NO.2, 2005 130 

Acknowledgement 
 
Some part of the work reported here has been taken from the PhD thesis of the first 
author that was completed by him under the supervision of Prof. T. Ramamurthy of 
IIT Delhi and Prof. K.S. Rao. The contributions of Prof. Ramamurthy in completion 
of the work are gratefully acknowledged. 
 
 
References 
 
Arora, V.K. (1987). Strength and Deformational Behaviour of Jointed Rocks., Ph.D. 

Thesis, IIT Delhi, India. 
Brown, E.T. (1970a). Strength of Models of Rock with Intermittent Joints, Jl. of Soil 

Mech. & Found. Div., Proc. ASCE, 96(SM6), 1935-1949. 
Brown, E.T. (1970b). Modes of Failure in Jointed Rock Masses, Proc. of the Second 

Cong. of ISRM, Belgrade, Vol-II, 293-298. 
Brown, E.T. and Trollope, D.H. (1970). Strength of a Model of Jointed Rock, Jl. of 

Soil Mech. & Found. Div., Proc. ASCE, 96(SM2), 685-704. 
Deere, D.U. and Miller, R.P. (1966). Engineering Classification and Index Properties 

for Intact Rock, Technical Report No. AFNI-RT-65-116. Air Force Weapons 
Laboratory, New Mexico. 

Einstein, H.H. and Hirschfeld, R.C. (1973). Model Studies on Mechanics of Jointed 
Rock., Jl. of Soil Mech. & Found. Div. Proc. ASCE, 90, 229-248. 

Gerrard, C.M. (1982). Equivalent Elastic Moduli of a Rock Mass Consisting of 
Orthorhombic Layers. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1982; 19:9–
14.  

Goldstein, M., Goosev B., Pyrogovsky N., Tulinov R. and Turovskaya A. (1966). 
Investigation of Mechanical Properties of Cracked Rock., Proc Ist Cong., Int. Soc. 
Rock. Mech. Lisbon, 1, 521-524. 

Goodman, R.E. (1976). Methods of Geological Engineering in Discontinuous Rocks. 
San Francisco: West Publishing Company, 1976. 

Goodman, R.E., Taylor R.L. and Brekke T.L. (1968). A Model for the Mechanics of 
Jointed Rock. J. Soil Mech. & Found. Div. Proc. ASCE 94, SM3, 1968. 637–659. 

Hart, R.D., Cundall, P.A., Lemos J.V. (1988). Formulation of a Three Dimensional 
Distinct Element Method—Part II: Mechanical Calculations for Motion and 
Interaction of a System Composed of Many Polyhedral Blocks. Int. J. Rock 
Mech. Min. Sci. Geomech. Abstr., 25(3), 117–25. 

Hayashi, M., (1966). Strength and Dialatancy of Brittle Jointed Mass- The Extreme 
Value Stochastic and Anisotropic Failure Mechanism., Proc Ist Cong. ISRM, 
Lisbon, 1, 295-302. 

Huang T.H., Chang C.S. and Yang Z.Y. (1995). Elastic Moduli for Fractured Rock 
Mass. Rock Mech. Rock Engng. 28(3), 135-144. 

Ladanyi, B. and Archambault, G. (1970). Simulation of Shear Behaviour of a Jointed 
Rock Mass, Rock Mechanics- Theory and Practice, Proc. 11th Symp. Rock Mech., 
Berkeley, California, 105-125. 

Ladanyi, B. and Archambault, G. (1972). Evaluation of Shear Strength of a Jointed 
Rock Mass., Proc. 24th Int. Geological Congress, Montreal, Section 13D, 249-
270. 

Lama, R.D. (1974). The Uniaxial Compressive Strength of Jointed Rock, Prof. L. 
Müller Festschrift, Inst. Soil Mech.  & Rock Mech., Univ. Karlsruhe, Karlsruhe, 



MAHENDRA SINGH & SESHAGIRI RAO–PHYSICAL AND CONSTITUTIVE MODELLING 
 

131 

67-77. 
Li, C. (2001). A Method for Graphically Presenting the Deformation Modulus of 

Jointed Rock Masses, Rock Mech. Rock Engng, 34(1), 67-75. 
Lögters, G. and Voort, H. (1974). In-Situ Determination of the Deformational 

Behaviour of a Cubical Rock-Mass Sample under Triaxial Load, Rock 
Mechanics, 6, 65-79. 

Roy, N. (1993). Engineering Behaviour of Rock Masses Through Study of Jointed 
Models., Ph.D. Thesis, IIT Delhi, India.  

Shi, G. (1988). Discontinuous Deformation Analysis—A New Numerical Model for 
the Statics, Dynamics of Block Systems. PhD thesis, University of California, 
Berkeley, USA, 1988. 

Singh, B. (2005) Personal Communication. 
Singh, M. (1997). Engineering Behaviour of Jointed Model Materials, Ph.D. Thesis, 

IIT, New Delhi, India. 
Singh, M. (2000). Applicability of a Constitutive Model to Jointed Block Mass, Rock 

Mech. Rock Engng., 33 (2), 141-147. 
Singh, M., Rao, K.S. and Ramamurthy, T. (1997). Prediction of Strength of Jointed 

Rock Mass Based on Failure Mode, Proc. Indian Geotechnical Conference-1997, 
Vadodara, 139-142. 

Singh, M., Rao, K.S. and Ramamurthy, T. (1998). A Simple Stress-Strain Curve For 
Jointed Block Mass, Proc. Indian Geotechnical Conference-1998, N. Delhi, 343-
346. 

Singh, M., Rao, K.S. and Ramamurthy, T. (2002). Strength and Deformational 
Behaviour of Jointed Rock Mass, Rock Mech. Rock Engng., 35(1), 45-64. 

Yaji, R.K. (1984). Shear Strength and Deformation Response of Jointed Rocks., Ph.D. 
Thesis IIT Delhi, India.  

Yang, Z.Y. and Huang, T.H. (1995). Effect of Joint Sets on the Anisotropic Strength 
of Rock Masses, Proc. 8th Cong. ISRM, Japan, 367-370. 

Yoshinaka and Yamabe (1986). Evaluation of Mechanical Parameters of Rock Mass 
in Numerical simulation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23(1), 
19–28. 
 


