Constitutive Laws for Jointed Rock Mass

N.K. Samadhiya

Department of Civil Engineering
Indian Institute of Technology
Roorkee — 247 667 (India)
Phone : +91-01332-285467(0); 285052 (R)
Fax : 01332 - 273560
Email : nksamfce@iitr.ernet.in

ABSTRACT

The rock masses essentially consist of two comsitti intact rock and discontinuities.
The presence of these natural discontinuities siscjoints and bedding planes in rock
masses can exert a significant influence on theorese of rock masses in both surface
and underground excavations. The existence of oseweral sets of discontinuities in
rock mass creates anisotropy in its response to applied stress field. The
discontinuities may be oriented arbitrarily in awyrection. Before any of these
influences may be evaluated for a given rock ereging project, it is necessary that the
discontinuities in the rock mass be properly chardmed and their properties
established. Three approaches can be followedcmuat for the effect of joints on rock
mass strength and deformability. The first approamtsists of empirically reducing the
strength and modulus of a rock mass from those unedon intact rock samples in a
laboratory. In the second approach, an intact necknodelled using solid isotropic
elements, whereas the joints are modelled expliciing special joint elements to
introduce the complex response of joints to norrmaatl shear stresses. The third
approach, which has been described in the presgmrpis to treat a jointed rock mass
as an equivalent anisotropic continuum. The approaiens to capture the overall
behaviour of the rock mass based on the consgtutharacteristics of intact rock and
rock joints including their orientation, spacingughness (waviness), number of joint
sets, block size and normal and shear stiffnessTéte constitutive relationships for
jointed rock mass have been derived and appli@shadyse an underground tunnel using
a software package developed for the purpose.

Keywords:. Discontinuities; Rock masses; Underground excamatio Strength;
Deformability; Strain energy; Equivalent anisotmpbntinuum.

1. INTRODUCTION

The presence of joints in rock mass has a pronaleffect on the mechanical behavior
of rock mass. To accommodate these effects, twaoappes were suggested for
modeling the jointed rock masses. The joints may ibeluded explicitly in
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mathematical relations or to be implicitly represeh in constitutive relations.
Evaluation of parameters associated with constgutws of intact rock and rock joints
via large-scale in-situ tests is difficult and isually very expensive. Under such
circumstances, studies related to rock masses srenmely important from the
standpoint of both research and practice. Duncath @oodman (1968) replaced
regularly jointed rock mass by an equivalent oribyaic continuum. The average strain
energy concept was adopted by many research waigrs1963 and Singh, 1973) for
deriving the constitutive equations of rock masthvarthogonal sets of discontinuous
joints intersecting an isotropic rock material. Ged (1982) pointed out that the total
strain, total compliance, and total stiffness ahfed rock mass may be obtained from
the addition of these components for the rock meltend each of the joint sets in
global coordinates. Fossum (1985) treated the rmtkt as a one-dimensional
continuum characterized by joint shear and norritihesses while the intact rock is
modeled as a three-dimensional continuum with dgitr elastic properties. The rock
mass system used was also studied earlier by AnaadeGoodman (1981) in which the
effective modulus was found to depend on joint sgacelastic properties of joint and
elastic properties of the intact rock. Alehossaiidl £arter (1990) developed a set of
anisotropic elasto-plastic constitutive relatioonglefine the overall behavior of the rock
mass. Indraratna (1990) examined the effect ofith@ngement of joints on the overall
response of jointed rock mass based on linearsj@imiulated with a pair of hardened
plastered surface prepared by using gypsum, cerardtwater. Yamabe et al. (1990)
derived an elastic compliance tensor of jointedknoasses by treating each crack as a
set of parallel plates connected by two springsuti laminate model for jointed rock
mass was proposed by Pande (1993) based on arakpiimaterial approach. Cai and
Horii (1993) developed a constitutive model fomjeid rock masses, which reflects the
size, density, orientation and connectivity of jeimas well as their mechanical
properties. Wang and Garga (1993) proposed a [dpdkg model to analyze the stress
and deformation behavior of the jointed rock massluding large displacements.
Amadei (1996) recommended the use of nonlineartielys or more complex
constitutive behavior if the permanent deformatimeurs, as the linear elasticity may
be of a limited value while describing the deformfigbof anisotropic rock. However,
the linear anisotropic elasticity analysis cangietasonable results if the properties of
rock are similar to in-situ condition in the rangé stress under consideration. The
anisotropy decreases with an increase in confinenirat et al. (1997) suggested an
approach for modeling the anisotropy based on #geafi micro-mechanical properties
to obtain a macroscopic stress-strain relationshigharam and Latha (2002) improved
the capability of equivalent continuum approach #redjoint factor model for the stress
analysis of an excavation in jointed rock. A twalscconcept was proposed by Ku et al.
(2004) for modeling the behavior of jointed rockgses using a combined equivalent
continuum approach and discrete approach.

This paper presents the constitutive relationsfopgointed rock mass. The approach
considers the jointed rock mass as an equivalenso@mopic continuum. An
underground tunnel problem of Wittke (1990) hasnbaealyzed. The results have
compared well.
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2. DERIVATION OF CONSTITUTIVE LAWS
2.1 Resolution of Stressesalong a Joint Plane

Figure 1a shows a joint plane in global refererm@inates system. In global X,Y,Z
co-ordinate system of axes, the Z-axis is takeremtical direction andx represents the
trend of X-axis with respect to global North andasered in the clock-wise direction.
The dip direction and the dip of the joint plang (8§ joint set) areq; and
respectively. Stresses on the inclined joint plaae be obtained by resolving the
stresses in two stages. Firstly, the stressesaotved along XY',Z' axes where Zaxis

is vertical while the Yaxis is parallel to the strike of the joint plazed X represents
the direction of horizontal trace of the line opdin the following derivation, anti-
clockwise angles between axes are taken as posHigare la shows the rotation of
X" Y',Z axes with respect to the reference X,Y,Z axesiahds been defined by the
following direction cosines:

|, =cos(a,-a,), I, =sin(a; - a,), l,=10
m, =sin(a,-a;), m, =cos(a; - a, ) m,= 0
n =0, n, =0, n,= 1 (1)

The rotation from X,Y,Z axes to 'X¥'.Z' axes can be performed through the
transformation matrix, T;' ] which represented as follows:

12om o 21,m 2mn 2nl;
12 m 21, m, 2m,n, 2n,l,
' l; m 21,m, 2mn, 2n,l,
s 0
LI, mm, nn (Mml,+Iim) (hm+mn) (nl,+1,n)

|2|3 mznk n2n3 (mzla"'lzms) (n2n13,+rnzn3) (n2|3+|2n3)
Ll mmy o, (Ml +lm) (nmy+mny)  (nly+1n) |

The first transformation matrix, Tj' ] can be re-written after substituting the direnti
cosines of Eg. 1 into Eq. 2 as,

cos’ A si‘kA 0 sin2/ 0 0
sin’ ) coA 0 -sin2A 0 0
) 0 0 1 1 0 0
[E}= L L (3)
-3Sin2A $sin2A 0 cos2A 0 0
0 0 0 0 cosd -sinA
. 0 0 0 0 sinA  cos/ |

where A = (ax—a;) 4)
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(b)

Fig. 1 — Orientation of Axes with respect to a jgitane

Rotate the stresses in vector formm, {with respect to X,Y,Z axes to stresses in vector
form, {o'} with respect to XY',Z" axes as (Malvern, 1969),

(o)= |7 |{0) ®

where,
N
(oy={a.0.0.1,1,1] (6)
T
{o} :{ax, o, 0,, T,, T, sz} (7)

and [T;' ] is the first transformation matrix defined in.By

The following direction cosines define the rotatibetween the XY'.Z' axes and
X", Y", Z" axes (Fig. 1b):

l, =-cosy,, m, =0, n =+siny,
[, =0, m, =1, n,=0
l; ==siny;, m, = Q, N, = —Ccosy, (8)

Based on the above direction cosines, the secandfarmation matrix, T;" ] can be
written as,
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coSy, 0 sy, 0 0 -sin2y, |
0 1 0 0 0 0
1] = sify, 0 cosy, 0 0 sin2y,
[ . }_ 0 0 0 —cosy; siny, 0 ©)
0 0 0 —sinyg; —cosy, 0
_%sinzwj 0 —3sin2y, 0 0 cos2y; |

Now in second stage, rotate the stresses in vémtor, { o' } referred to XY',Z' axes
to stresses in vector form,d" } in X",Y", Z" axes using the second transformation
matrix, [T;" ] given in Eq. 9. Hence,

{o"}=] 7" {0} @0)

where, axis Y is parallel to Y axis or the strike of the joint plane and the aXs is
rotated to lie on the joint plane. Thus, the aXisis normal to the joint plane.

Finally, the stresses on the joint plane in veébom, { g" } consisting of one normal
stress and two shear stresses, can be obtainemhiiyring Eq. 5 and Eq. 10 as follows:

{a"}:[TJ" HTj’ }{a} (11)

Figure 2 shows thatr,~ is the normal stress on the joint plane ang- and 7, are
the shear stresses on the joint plane along treXxand Y' respectively.

2.2  Eladtic Congtitutive Equations

It has been assumed that the average strain enem@ynit volume of rock mass is
approximately half the product of average stressebaverage strains within the rock
mass (Hill, 1963). It is also assumed that all jaiats do not essentially interact with
each other significantly. In other words, averaggess on any joint plane is practically
independent of the average stresses of otherptanes. This is equivalent to assuming
homogenous stress field in a unit cube of a joimterk mass so that the strain energy
will tend to be the upper bound of the true stramergy. The computed elastic strain
will therefore be slightly conservative. The el reduce as the loaded area becomes
much larger than the size of the rock blocks.

The average normal straiay, across the layered rock mass is now related tcagee
stresses by the following expression assuming ahgpcessive stress to be positive:

E E E K, K, K,

r,|
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g Parallel Joints
(One Joint Set)

/

Fig. 2 — Orientation of stresses on a joint plane

where,E, defines the elastic modulus of the rock matedalk the Poisson’s ratio of the
rock materialf; refers to the joint frequenci, is the normal stiffness of the joirks is
the shear stiffness of the joint, g@depresents the angle of roughness of the joint.

Assuming that the dilation of joints may be assmclawith any slip along the rough
joints, accordingly the average strain vector dbated by one joint set can be obtained
as,

[0 0 0 0 0 0 _
A 0 0 o0 0 0
xX'X' anxu
£ A -1, tanﬂ‘ Tyvzv‘ -1, tanﬂ\ Tyl o
o vy
& kn kS Tyy kS Typ o
27 | - 13)
Vey 0 fo 0 Ty
Vyz Symmetric L 0 Iy,
Vox ks e
7% . ”
1
L k. |

or { &'}, =[C ]{o"},.. (14)
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where,{og" } is the vector of average stresses in a rock r{ass} is the vector of
average strains contributed by one joint set, [a@f] is the compliance matrix of the
joint set.

With the aid of Eq. 11, stress and strain vectangetbeen transformed accordingly and,
thus, the constitutive equation may be written as,

[Ti"MTJ.'}{s}z[cj][Tj" MTJ.' }{a} (15)
i [ Ttel ][ o

By the addition of average strains contributed bgkrmaterial and one joint set in
global system, the following relation can be dedive

(er=|te ) (v | [r ] Ted[n ][] o) a7)

or{e}=[C]{0o} (18)

where,[ C] is the compliance matrix of a rock mass with ®ngint set and defined as,
[c]:[c,]{Tj' } [Tj"} [Cj][Tj"} [Tj'} (19)

and[ C; ] is the strain-stress matrix (compliance matrix)tte# rock material. For an
isotropic rock material,

1
I

1% % 5 o9 o
E E E
v 1 U
42 % 9 0 0
EE E E
c1=| & & & (20)
O 0 0 — 0 o0
Gr
o o o0 o0 X o
Gr
o o o0 0o o0 =~
L Gr_

where,G; is the shear modulus of rock material and given as
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G =E /2(1+u,) (21)

When more than one joint set have been found inrtle& mass with different dip
direction, ; and amount of dipg , the total strain in the entire jointed rock meiia
equivalent to the summation of strains contributgdock material and all thi joint
sets which intersect the media. Thus, the desirgdratl strain-stress matrix
(compliance matrix) of jointed rock mass may beaoi®d as,

[C]=[Cr]+i[Tj' } [T{'}T [cj][Tj"HTj’} (22)

j=1
Inverse of the above matrix is the elasticity mafrD ] of the jointed rock mass.

For a joint setk, = ks = 0 (negligible) have been assumeddgr-> 0, i.e. it is assumed
that the rock mass cannot withstand tensile stsesse

The constitutive relations as derived above, has liecorporated by Samadhiya (1998)
in a finite element computer package ASARM. The sgmckage has been used to
analyze an underground tunnel to validate the ddroonstitutive relations.

3. ANALYSISOF AN UNDERGROUND TUNNEL IN JOINTED ROCKMASS
3.1 Problem Definition

An attempt has been made herein to analyze thdgmobf a traffic tunnel analyzed
earlier by Wittke (1990). The tunnel was excavasdh depth of 250 m below the
ground surface. The geometrical details of tunnel presented in Fig. 3. Two
orthogonal joint sets were found in the excavatgion dipping at 45and striking
parallel to the tunnel axis. The tunnel was analyire3-D by considering one layer of
brick elements. The solution was based on an asalysvhich the reduced strength of
the two sets of discontinuities was considered.tHa present study, anisotropic
continuum approach has been applied for 3-D arsabyfsihis tunnel.

The properties of constituents of rock mass arsgmied in Table 1. Shear stiffness of
the joints have been taken as one-tenth of the alcstiffness (Bandis et al., 1981). The
rock has been treated as an elastic anisotropincom.

The tunnel periphery has been subjected to equivdd@ds due to release of in situ

stresses. Only part of the height, which may gstudbed due to the excavation process,
has been taken into account, while the effect wiaiaing height has been accounted for
by applying a distributed pressure on the top bamdf the mesh. The loads due to in
situ stresses have been calculated using the fiolipexpressions:

{F;}:jv [B] {o,} dv 23)
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250.0 m

Joint set-I

Joint set-ll

oo

Fig. 3 — Geometrical details of tunnel (Wittke, 099

Table 1 - Material Properties (Wittke, 1990)
Material Type | No Property Value
Young’s modulus, E
1 (MPa) 2000
Intact rock | Poisson’s ratiop 0.4
3. Unit weight, y (KN/m®) | 25.0
4 Cohesiong (MPa) 0.1
Angle of friction, ¢
5. 30
(Deg.)
: Normal stiffness,k,
Joint sets '
6. ( MPa/m) 3300
Shear stiffness, ks (
7. MPa/m) 330
8. Spacing of joint,§(m) | 1.0

where {7, } :{Uxo, Ty Uzo}

T_

{nyz, Ky ¥z yz}T

85

(24)

in which Ky andKy are the coefficients of the lateral earth presgudéand Y directions
respectively,y is the unit weight of rock mass, amds the depth of Gauss point below

ground surface.
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In addition, uniformly distributed load of 5.5 MRating in the downward direction has
been applied on the top surface of the domain. §yremetry of geometry and the
loading conditions has been considered. Figureodvshthe finite element mesh having
width, height and length of 36 m, 68 m and 25 npeesively. The mesh comprises of
300, 3-D parabolic brick elements and 1714 nodes.

68.0m
|

Fig. 4 — 3D Finite element mesh of tunnel

A restrained boundary condition has been imposethénhorizontal direction on all
lateral faces of the finite element mesh, wherbashibttom face was retrained in the

vertical direction.
3.2 Analysisof Results

(a) Deformed Profile

The displacements deformed profile of the finikeneent mesh is shown in Fig. 5a. It
may be noted that the displaced zone reduces héhlistance away from the tunnel
periphery. Maximum displacements have been founturatel periphery in both the
directions. The displacement at the roof of tuniseBlmm downward whereas it is
about 18.5mm upward at the floor of tunnel. At thieldle of the sidewall, the vertical
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and horizontal displacements are 9mm and 8mm réselc directed towards the
excavation.

Vertical Distance irz-Direction (m’

1%777\777T77”\777‘T’ ‘F***\H***T**”\***‘T’
15 20 25 30 35 15 20 25 30 35
Horizontal Distance ix-Direction (m) Horizontal Distance i Direction (m)
(a) Present Study (b) After Wittke (1990)

Fig. 5 — Deformation (mm) profile around an undetgrd opening

The deformed profile obtained by Wittke (1990) iegented in Fig. 5b. It can be
observed that displacements obtained inpiflessent studwre slightly higher than those
obtained by Wittke (1990) in the upper part of telnThe opposite is true for the lower
part of tunnel. Nevertheless, the deflected shapemin the same. The differences in
deformations may be due to different approachesptadoin arriving at these
displacements. Another reason for such a differeneg be the difference in some
characteristics of joint sets adopted like stiffess of joints. These stiffnesses have a
pronounced effect on the behavior of rock masses.

From the above interpretation, it may be conclutthed anisotropic continuum approach
may be effectively used to simulate the anisotrepak masses. The only limitation of
this approach is that displacements along the iddal joints can not be obtained.

(b) Deformation Contours
Figure 6a shows the contours of vertical displsmes around the tunnel. Larger

displacements have been found concentrated nearala of the tunnel. Comparison
with the solution, given by Wittke (1990) in Figh,&reveals a close correspondence and
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thus further proves that anisotropic continuum apph can be used to analyze
structures in anisotropic rock masses.

B

N
_ ‘EET?/T

w w

Vertical Distance ire-Direction (m)
N

N
-2

25 30 35

Horizontal Distance ix-Direction (m) Horizontal Distance ix-Direction (m’

(a) Present Study (b) After Wittke (1990)
Fig. 6 — Vertical displacement (mm) contours aroandinderground opening

(c) Stress Contours

The contours of induced vertical stresses resulfingy the excavation of tunnel in
anisotropic rock mass are plotted in Fig. 7a. Highduced compressive stresses of
magnitude 6.5 MPa have been recorded in the sitl@ivaéhe tunnel. These decrease
with distance away from the tunnel wall and reacfalae of about 0.5 MPa at about 15
m from the sidewall. At crown, the stresses becdemsile with a magnitude of 5.0
MPa.

Similar results were obtained by Wittke (1990) whare presented in Fig. 7b. A very
good agreement has been found from both the studies

(d) Stress Distribution

Re-distribution of stresses at crown and the sitlesfdunnel are presented in Fig. 8a.
The stress decreases away from the tunnel perigiredyreaches a constant value of
about 6.75 MPa at about 10 m from the tunnel wilithe periphery of tunnel, radial
stress has been found to be zero followed by areasing trend and then a constant
value of 4.4 MPat a distance of about 10 m from the tunnel wall.
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Fig. 7 — Contours of induced vertical stress (M&aund an underground opening
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Fig. 8 — Stress (MPa) distribution at crown ana sflunderground opening
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At the crown, opposite behavior has been found,maximum radial stressy, at the
periphery of tunnel and then decrease up to a anhsalue of 4.7 MPa at a distance of
about 10 m from crown. The tangential stressjs zero at crown and then increases to
a value of 5.6 MPa at 10 m from crown. The radral gangential stresses are in close
agreement with those of Wittke (1990), as presemmtétg. 8b

(e) Principal Stress Contours

To illustrate the redistribution of stresses aban opening as a result of excavation of
tunnel in the rock mass, the resulting principegst distribution has been presented in
Fig. 9a alongwith the orientation of principal pésn It is clear from this plot that
principal stresses are redistributed in magnitutk direction, especially in the vicinity
of the excavated tunnel. Insignificant effect h&er found of excavation on stress
redistribution beyond a distance of 10 m from thenel wall. The results are
compatible with those by Wittke (1990) as showiiig. 9b.

al

IS

trajectory

N

.8 5 s & 5 & 8

w

Vertical Distance irz-Direction (m’
N

N

#2.0 MN/nt %z.o MN/nf

15+ 1 1 r -0 X -
15 20 25
Horizontal Distance ix-Direction (m) Horizontal Distance ix-Direction (m)
(a) Present Study (b) After Wittke (1990)

Fig. 9 — Distribution of principal stresses (MP&und an underground opening
4. CONCLUSION
Presence of mechanical defects, like joints eéngers the rock mass to be anisotropic.

The joints may occur in the form of regular joiets each joint set being characterized
by its own dip, dip direction or strike. Mechanida¢havior of rock mass is also
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influenced by the frequency of joints and the numtfejoint sets. The joints may be
dilatant in nature depending upon whether the jsurfaces are rough or smooth. The
joints may have in-fillings or gouge material pnetseConstitutive relationships of the
rock mass should therefore reflect the influencalbfhese parameters so as to obtain a
realistic picture of deformations, strains and s#es developed due to different
loadings.

An attempt has been made in this paper to prelserdonstitutive relationships for such
anisotropic rock masses so that these could badadlin the finite element analysis of
large tunnels or caverns. As such a very exhauatidea comprehensive finite element
package ASARM has been developed for analyzing ngnolend excavations involving
3-D geometry. A tunnel excavated in an isotropickronass has been investigated in
detail. The fact that results of the present satyoborate with the results of the earlier
investigator (Wittke, 1990) justify the applicabyliand utility of the constitutive
relations.
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