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ABSTRACT 
 
This paper examines the capability of Support Vector Machine (SVM) based 
classification approach for rock slope stability analysis. SVM achieves good 
generalization ability by adopting a structural risk minimization (SRM) induction 
principle that aims at minimizing a bound on the generalization error of a model rather 
than the minimizing the error on the training data only. This study uses SVM as a 
classification tool. The inputs of SVM model are unit weight (γ), cohesions (cA) and 
(cB), angles of internal friction (φA) and φB, angle of the line of intersection of the two 
joint-sets (ψp), slope angle (ψf) ,height (H), where A and B refer to the two joint sets. 
An equation has been developed for the prediction of stability of rock slope based on 
SVM model. This study shows that SVM is a powerful model for the determination of 
stability of rock slope.  
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1. INTRODUCTION  
 
The stability of rock slope plays an important role when designing dams, roads, tunnels 
and other engineering structures. So, the prediction of stability of rock slope is an 
imperative task in rock engineering.  The determination of stability of rock slope is a 
difficult task due to inhomogeneous and discontinuous (joints, fractures and bedding 
planes) nature of rock mass. Practicing engineers use different methods for the 
prediction of stability of rock slope (Jaeger, 1971; Hoek and Bray, 1981; Zanbak, 1983; 
Goodman and Kieffer, 2000; Siad, 2003; Hack et al., 2003; Yarahmadi and Verdel, 
2005). However, most of the available methods simplify the problem by incorporating 
several assumptions associated with the factors that affect stability of rock slope. 
Therefore, the available methods are nor reliable. As a result, alternative methods are 
needed, which provide more accurate prediction of stability of slope.  
 
This study examines the potential of Support Vector Machine (SVM) for prediction of 
stability of rock slope.  SVM  is  based  on  statistical  learning  theory  which  has  been  



developed by Vapnik (1995). SVM adopts structural risk minimization (SRM) 
principle. SRM seeks to minimize the upper bound of the generalization error rather 
than minimize the training error. The details of SVM and its application to geotechnical 
engineering problems can be found in literatures (Vapnik, 1998; Goh and Goh, 2007; 
Samui, 2008; Samui et al., 2008; Smola and Schilopf, 2004). This study uses the 
database collected by Sakellariou and Ferentinou (2005). The dataset contains the 
information about  unit weight (γ), cohesions (cA) and (cB), angles of internal friction 
(φA) and φB, angle of the line of intersection of the two joint-sets (ψp), slope angle (ψf) 
,height (H), where A and B refer to the two joint set and status of slope i.e. stable or 
failed. The paper has the following aims: 
 
• To investigate the feasibility of SVM for prediction of stability of rock slope 
• To determine an equation for prediction of status of rock slope based on SVM 

model  
 

2. DETAILS OF SVM 
 
SVM has recently emerged as an elegant pattern recognition tool and a better alternative 
to ANN methods. The method has been developed by Vapnik (1995) and is gaining 
popularity due to many attractive features. This section of the paper serves an 
introduction to this relatively new technique. Details of this method can be found in 
Boser et al. (1992), Cortes and Vapnik (1995), Gualtieri et al. (1999) and Vapnik 
(1998). A binary classification problem is considered having a set of training vectors 
(D) belonging to two separate classes. 
 

()(){ }ll11 y,x.,,.........y,xD =        nRx ∈, {}11,y +−∈                     (1)  

 

Where nRx ∈ is an n-dimensional data vector with each sample belonging to either of 
two classes labelled as {}11,y +−∈, and l is the number of training data. The main aim 

is to find a generalized classifier that can distinguish the two classes (-1, +1) from the 
set of the training vectors mentioned above (D) and also can classify equally well the 
unseen data. In the current context of classifying slope failure, the two classes labelled 
as (-1, +1) may mean failed rock slope and stable rock slope. In this study, γ, cA,cB φΑ, 
φΒ, Ψp,Ψf   and? H   are used as input parameters. So, [ ]fpBABA ccHx ψψφφγ ,,,,,,,= . For 

a set of data, this would mean a linear hyper plane defined by Eq. 2 which can 
distinguish the two classes.  
 

 () 0bw.xxf =+=                          (2)  

 

Where nRw ∈ determines the orientation of a discriminating hyperplane, Rb ∈  is a 
bias. An example of hyperplane is shown in Fig. 1.   For the linearly separable case, a 
separating hyperplane can be defined for the two classes as 
 
 1b

i
w.x ≥+ (for yi =1)                       stable slope 

                                                               114                                                                     J. OF ROCK MECHANICS AND TUNNELLING TECH. VOL. 16  NO. 2 - 2010



  x1 
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Failed rock slope (Class -1) 

Stable rock slope (Class +1) 

 
Fig. 1 - An example of hyperplane 

 
 -1b

i
w.x ≤+ ( for yi = -1)      failed slope                     (3) 

 
The above two equations can be combined as  
 
 ()1b

i
w.x

i
y ≥+                                                                       (4) 

 
Sometimes, due to the noise or mixture of classes introduced during the selection of 
training data, variables ξi>0, called slack variables, are used due to the effects of 
misclassification. So the Eq. 4 can be written as  
 ()

i
ξ-1b

i
w.x

i
y ≥+                           (5) 

 

The perpendicular distance from the origin to the plane 1b
i

w.x −=+  is
w

b1+
. 

Similarly, the perpendicular distance from the origin to the plane 1b
i

w.x =+ 

is
w

1-b
.The margin (ρ(w,b)) between the planes is simply  

 ()
w

2
bw,ρ =               (6) 

 
The optimal hyperplane is located where the margin between two classes of interest is 
maximized (Fig. 2) and the error is minimized.  The maximization of this margin leads 
to the following constrained optimization problem  
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Fig. 2 - Margin width of different hyperplanes 

 

Minimize: ∑
=

+
l

1i i
ξC

2
w

2

1
     

 
Subjected to: ()

i
ξ-1b

i
w.x

i
y ≥+              (7) 

 
The constant 0<C<? , a parameter defines the trade-off between the number of 
misclassification in the training data and the maximization of margin. A large C assigns 
higher penalties to errors so that the SVM is trained to minimize error with lower 
generalization while a small C assigns fewer penalties to errors; this allows the 
minimization of margin with errors, thus higher generalization ability. If C goes to 
infinitely large, SVM would not allow the occurrence of any error and result in a 
complex model, whereas when C goes to zero, the result would tolerate a large amount 
of errors and the model would be less complex. 
 
In order to solve the above optimization problem (Eq. 7), the Lagrangian is constructed 
as follows: 
 

 ( ) ()[]{ }∑
=

∑
=

−+−+−





∑
=

+=
l

1i

l

1i i
ξ

i
β

i
ξ1

i
yb

i
w.x

i
α

l

1i i
ξC

2

2
w

ξβ, α,b,w,L       (8) 

 
Where α, β are the Lagrange multipliers. The solution to the constrained optimization 
problem is determined by the saddle point of the Lagrangian function L(w,b,α,β,ξ), 
which has to be minimized with respect to w, b and ξ. Thus, differentiating L(w,b,α,β,ξ) 
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with respect to w, b and ξ and setting the results equal to  zero, the following three 
conditions have been obtained: 
 

Condition 1:             
( )

0
w

ξβ,α,b,w,L =
∂

∂
∑
=

=⇒
l

1i i
x

i
y

i
αw  

 

Condition 2:             
( )

0
b

ξβ,α,b,w,L =
∂

∂
∑
=

=⇒
l

1i
0

i
y

i
α  

 

Condition 3:             
( )

0
ξ

ξβ,α,b,w,L =
∂

∂
C

i
β

i
α =+⇒                       (9) 

 
Hence from Eqs. 8 and 9 the equivalent optimization problem becomes (Osuna et al., 
1997), 
 

Maximize: ∑
=

∑
=

∑
=




−
l

1i

l

1i

l

1j j
.x

i
x

j
y

i
y

j
α

i
α

2

1
i

α  

 

Subjected to: ∑
=

=
l

1i
0

i
y

i
α  and 0?αi?C,      for i=1, 2,…, l           (10) 

 
Solving Eq. 10 with constraints determines the Lagrange multipliers. According to the 
Karush-Kuhn-Tucker (KKT) optimality condition (Fletcher, 1987), some of the 
multipliers will be zero. The nonzero multipliers are called support vectors (Fig. 3). In 
conceptual terms, the support vectors are those data points that lie closest to the optimal 
hyperplane and are therefore the most difficult to classify. The value of w and b are 

calculated from ∑
=

=
l

1i i
x

i
α

i
yw and [ ]

1x1xw
2

1
b −++−= , where x+1 and  x-1 are the 

support vectors of class labels +1(stable slope) and -1(failed slope) respectively. The 
classifier can then be constructed as: 
 

() b)sign(w.xxf +=                (11) 

 
Where sign (•) is the signum function. It gives +1(stable slope) if the element is greater 
than or equal to zero and -1(failed slope) if it is less than zero.  
 
In case where linear supporting hyper plane is inappropriate, SVM maps input data into 
a high dimensional feature space through some nonlinear mapping (Boser et al., 1992) 
(Fig. 4). This method easily converts a linear classification learning algorithm into a 
non-linear one, by mapping the original observations into a higher-dimensional non-
linear space so that linear classification in the new space is equivalent to non-linear 
classification in the original space. After replacing x by its mapping in the feature 
space ()()xΦ , the optimization problem of Eq. 11 becomes 
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Fig. 3 - Support vectors with maximum margin 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Concept of nonlinear SVM for classification problem. 
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Fig. 4 – Concept of nonlinear SVM for classification problem 
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Maximize: ()∑
=

∑
=

∑
=
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Subjected to: ∑
=

=
l

1i
0

i
y

i
α  and 0?αi?C,      for i=1, 2,…, l                     (12) 

 

Kernel function ()


=



j

x.Φ
i

xΦ
j

.x
i

xK  has been introduced instead of feature 

space ()()xΦ  to reduce computational demand (Cortes and Vapnik, 1995; Cristianini and 

Shawe-Taylor, 2000). Polynomial, radial basis functions and certain sigmoid functions 
has been used as a kernel functions. To get the Eq. 11, same procedures have been 
applied as in linear case. So, the final classifier takes the following form: 
 

 () ()




 +=∑

=

l

i
iii bxxKysignxf

1

.α                       (13) 

 
This study uses the above methodology for prediction of stability of rock slope.  The 
data is scaled in between 0 and 1. In carrying out the formulation, the data has been 
divided into two sub-sets: such as  

(a)  A training dataset: This is required to construct the model. In this study, 16 out of 
the 22 data are considered for training dataset.  

(b)  A testing dataset: This is required to estimate the model performance. In this study, 
the remaining 6 data is considered as testing dataset. To train the RVM model, 
radial basis function has been used as kernel function. The program is developed 
using MATLAB. 

 

3. RESULTS AND DISCUSSION  
 
The training or testing performance has been calculated from the following formula: 

100
 data  Total

SVMby  accurately predicted data of No

 e(%)performanc Testingor  Training

×






=
                                                 (14) 

 
Figure 5 shows that the effect of C on testing performance (%) and number of support 
vector.  
 
From Fig. 5, it is clear that C value does not affect the testing performance (%) of radial 
basis function. In case of radial basis function, the number of support vector is 
decreasing up to C=30 and after that number of support vector remain constant with 
increasing C value (Fig. 5). The design value of C, width of radial basis function (σ) 
and number of support vector is 30, 1 and 10 respectively. The performance of SVM for 
training dataset is 100% using design value of C and σ. In order to determine the 
capability of SVM model, the performance of testing data  has been determined by 
using design C and s values. It has been shown that only one data (out of six data) has 
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been classified. Therefore, the developed SVM model has capability to predict status of 
rock slope. Tables 1 and 2 show the performance of SVM model for training and testing 
data respectively. The performance of training and testing is almost same for the 
developed SVM. So, the developed SVM model has ability to avoid overtraining. 
Therefore, it has good generalization capability. SVM uses only two parameters (σ and 
C). In ANN, there are a larger number of controlling parameters, including the number 
of hidden layers, number of hidden nodes, learning rate, momentum term, number of 
training epochs, transfer functions, and weight initialization methods. Obtaining an 
optimal combination of these parameters is a difficult task as well. Another major 
advantage of the SVM is its optimization algorithm, which includes solving a linearly 
constrained quadratic programming function leading to a unique, optimal, and global 
solution compared to the ANN. In SVM, the number of support vectors has determined 
by algorithm rather than by trial-and-error which has been used by ANN for 
determining the number of hidden nodes. 
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Fig. 5 - Variation of testing performance (%) and number of support vectors with 

capacity factor (C) values for radial basis function 
 

Table 1 - Performance of training dataset 

γ 
(kN/m3)  

cA 

(kPa) 
cB 

(kPa) 
φA(0) φB(0) ψp(

0) ψf(
0) H(m) Actual 

class 
Predicted 

class 

25.14 23.94 47.88 20 30 31.2 65 30.5 1 1 
25 14.36 16.76 28 18 30 45 37 -1 -1 

22.8 0 0 35 35 38 47 110 -1 -1 
26 0 0 30.6 22.8 30.6 33 270 1 1 
26 20 20 27 27 60 70 44 1 1 
26 0 0 39 39 60 70 44 -1 -1 

26.66 0 0 45 45 35 50 150 1 1 
25 0 0 32.4 32.4 30 48 50 1 1 

18.84 0 0 30 30 37.5 45 61 -1 -1 
23.24 19.15 28.73 22.6 19.1 29 40 46 -1 -1 

27 0 0 30 30 37.5 26 110 1 1 
27 0 0 20 30 37.5 26 110 1 1 

 

                                                                120                                                                     J. OF ROCK MECHANICS AND TUNNELLING TECH. VOL. 16  NO. 2 - 2010



Table 2 - Performance of testing dataset 

d 
(kN/m3)  

cA 

(kPa) 
cB 

(kPa) 
φA(0) φB(0) ψp(

0) ψf(
0) H(m) Actual 

class 
Predicted 

class 
27 0 0 20 30 43 26 50 1 1 
27 20 20 20 30 43 26 60 1 1 
27 0 0 10 10 43 26 60 -1 -1 
24 49 49 20 30 65 31 40 1 1 

     20 0 0 40 4 45 60 100 -1 -1 
19.9 40 19 22 22 37 42 140 -1 -1 
26.66 0 0 35 35 30 42 150 1 1 
18.84 30.07 3.6 30 36.7 37.5 45 61 -1 1 

27 0 0 20 30 37.5 26 50 1 1 
27 0 0 15 15 43 26 60 -1 -1 
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Fig. 6 - Values of α 

 
The following equation can be developed for the prediction of status(s) of rock slope 

(by putting () ()()










 −−
−=

22
exp,

σ

T

ii
i

xxxx
xxK , σ=1, l=16 and b=0 in Eq. 13) 

 

()()





















 −−
−=∑

=

16

1 2
exp

i

T

ii
ii

xxxx
ysigns α                                                    (15) 

 
Figure 6 shows the value of α. Practicing engineers can use the above equation for the 
prediction of stability of rock slope. 
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4. CONCLUSIONS 
 
This paper describes SVM model for prediction of stability of rock slope. The 
developed SVM model gives promising result for the prediction of stability of rock 
slope. An equation has been also developed for the prediction of status of rock slope.  
Once the model is developed and trained, it requires only a small fraction of 
computational time and gives promising result. Moreover, the model can always be 
updated to yield better results, as new data becomes available. In summary, this paper 
gives a robust models based on SVM for prediction of stability of rock. SVM model can 
be also applied for solving different problems in rock mechanics.  
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