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ABSTRACT  
 
The traditional design methodologies for tunnel and underground excavations are 
divided in to three categories: Empirical approaches, Analytical approaches, and 
Observational approaches, whereas in the last years the Numerical approach has 
strongly become popular both for the intrinsic simplicity of the software packages and 
their ability to manage problems unsolvable with the classic methods. 
 
In this paper, the underground openings have been analysed using constitutive models 
other than the Mohr Coulomb’s theory. FLAC is used for the analysis and the software 
has been implemented to include the polyaxial strength criterion. The details of the 
modifications made in the software are presented and the results are compared with the 
Singh's elasto-plastic stress distribution in squeezing grounds. This study will develop 
better comprehension of the behaviour of the underground openings and also provide a 
useful tool to the designers in the planning stages. 
 

Keywords: Tunnel excavation; Polyaxial strength criterion; FLAC, Strain softening; 
FDM; Finite difference analysis.  
 
 

1.   INTRODUTION  

 

Many constitutive models have been developed to describe the behaviour of a rock 
mass after modification of its equilibrium. In severe conditions none of these, however, 
has demonstrated sufficient correlation to the effective measured reactions. In fact, 
several experiences of back analysis in tunnels excavation (Jethwa, 1981), when 
compared to the results of the more applied designing procedures, have shown a 
marked tendency to overestimate the squeezing of the rock masses. 
 
To meet the needs of a more suitable theory for squeezing conditions, Wang and 
Kemeny (1995) performed several tests on anisotropic tuff to advance the hypothesis 
that the intermediate principal stress in an anisotropic rock mass under a polyaxial 
stress field could influences its behavior. 
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Fig. 1 - Stress distribution around and underground opening 
 

Rock mass in the vicinity of an underground excavation is a clear example of a medium 
subjected to a polyaxial stress field: σ3 is very small or equal to zero, σ2 is close to the 
in situ vertical stress (for deep tunnels) and σ1 could be double the intermediate 
principal stress. Moving away in the radial direction, the difference between maximum 
and minimum stress is less appreciable. 
 
The classical strength theory assumes that only minor and major principal stresses 
influence the stability of the rock surrounding the excavation. However, in practical 
situations, the consideration of intermediate principal stress results in enhancement of 
strength. This can be explained by the significant work done by the intermediate 
principal stress component along the tunnel direction that compresses wedges of rock, 
increasing their global resistance and preventing rock falls. 
 

2. ELASTO-PLASTIC THEORY OF STRESS DISTRIBUTION IN BROKEN 

ZONE USING POLYAXIAL STRENGTH CRITERION  

 
Singh et al. (1998) investigated the effects of the intermediate principal stress on the 
strength of anisotropic rock mass, and proposed to modify the Mohr-Coulomb’s 
criterion by replacing σ3 with the average value of σ2 and σ3. The polyaxial strength 
criterion based on semi-empirical approach has shown better correlation between 
analytical results and observations. The criterion suggested by them is given below: 
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Starting from Equation (1), they formulated an elasto-plastic theory of stress 
distribution in broken zone in squeezing ground.  
 
Initial hypothesis can be summarized as follows (Fig. 2):  
 

• Rock mass is isotropic, homogeneous and dry; 

• Rock mass follows the polyaxial strength criterion in the elastic zone, whereas 
the Mohr-Coulomb's theory inside the broken zone; 

• Circular tunnel of radius ri is uniformly supported, and circular broken zone is of 
radius rp;and 

• There is no rock burst or brittle failure. 
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Fig. 2 - Schematic boundary conditions of the problem 
 

 
Stress distribution within the broken zone is given as:  
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 σθ = qcr + 1+α( )σ r                                                                                                                                              3( )  
 

Squeezing Pressure at the lining in the vertical direction (θ = 90°): 
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and in the horizontal direction (θ = 0°): 
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Squeezing pressure at the lining for hydrostatical initial stress and negligible effect of 
rock mass weight is:  
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Where 

  

A =
2sinφp

1− sinφp

,   α =
2sinφr

1− sinφr

,   qcmass = 7γQ
1 3,   qcr =

2cr cosφr

1− sinφr

  and  Pb = Pv

((1+ λ)+ 2(1− λ)cos2θ )− qcmass −σ z A / 2

2 + A / 2
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3. NUMERICAL ANALYSIS

 
 

3.1 Statement of the Problem 

 
The introduction of several engineering numerical analysis suites (FEM, FDM, BEM, 
DEM) has changed the approach to excavation problems. Now, it is possible to carry 
out a more detailed analysis considering complexities such as the influence of new 
parameters, particular geometries and boundaries shapes, introducing new excavation 
technique or considering the complex rock mass-liner interaction. Many very powerful 
codes have been developed for different constitutive models and are available for the 
analysis of geo-mechanical problems, but none of them consider the effect of the 
intermediate principal stress in the evaluation of plasticity. 
 
The scope of this work is to include the polyaxial criterion among the more common 
constitutive model codes for FLAC and make it available for practical tunnel design. 
FLAC (Itasca) is a two-dimensional explicit finite difference program for solving many 
computational problems of geotechnical engineering and rock mechanics.  
 
In this study FLAC has been chosen for implementing a user-defined constitutive 
model, which is not present in this software and also in any other standard software. 
The model has been compiled in FISH (Appendix B), the built in program language. 
The inclusion of this feature in this software makes it ideal software for many practical 
studies of underground openings. 
 
3.2 Modifications to Implement the Polyaxial Constitutive Model 

 
To develop a FISH code to incorporate the polyaxial strength criterion, it is important 
to redefine the constitutive model's formulation consistent with the sign convention in 
FLAC. Starting with this, compression is taken as negative and the ordering of the 

principal stresses is σ1 < σ2 < σ3 as in structural engineering. 
 
To avoid misunderstanding when the requested data for the execution of the model are 
inserted by not an expert user, the variable needed are always positive in sign. This 
obviously affects the formulation of the constitutive model because, in such a reference 
system, Cohesion and Uniaxial Compressive Strength would be negatives. 
 

σ1 −σ 3 −σ ci −
σ 2 +σ 3
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Incorporating these, Mohr's Theory and polyaxial criterion will take the form given as: 
   
  Mohr’s:                                                              0N ci31 =+− σσσ ϕ      (7)

  
 

  Polyaxial:            0A
2

32
ci31 =






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−+−

σσ
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Other necessary step is to reformulate the polyaxial strength criterion to make it similar 
to the Mohr's formulation, as suggested below:   
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σ1 −σ 3N 'φ +σ 'ci = 0                                                         (9) 

 

Where σci is the Compressive strength at the internal boundary of a tunnel 
 

 
σ 'ci = σ ci −

σ 2

2
A = 0  

and, where           Nφ =
1+ sinφ

1− sinφ
            Nφ

' =
1

1− sinφ   
 
The polyaxial strength criterion as given by Equation 9 is shown in a graphical form in 
Figure 3. The similarity with the Mohr-Coulomb’s criterion is quite evident. However, 
the polyaxial criterion incorporates the intermediate principal stress, which is not 

incorporated in Mohr-Coulomb’s criterion. Therefore, the parameters N'φ and σci are 

different from the corresponding Nφ and σci. It is appropriate to highlight that the 
intermediate principal stress required to be evaluated only in elastic condition and is 
automatically computed by FLAC.  

 
 

σ1

σ3

σ’ci = σci +σ2/2

α = atan(N’φ)

σ t

}

}

 

Fig. 2 - Graphical Polyaxial Constitutive Model 
 
In order to have a three dimensional constitutive model in elastic zone and a bi-
dimensional model after it fails, in the analysis, a new approach is suggested in this 
paper. A new relationship based on the similarity between Equations 7 and 9, is 
proposed below: 
 

 

σ1 −σ 3

1+ sinα

1− sinφ




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The advantage of the above equation is that it can handle both elastic zone and plastic 
zone by appropriately choosing the parameters. The values of the parameters 

α, β, φ and σci to be used are given in Table 1.  
 
Substituting in Equation 10 the peak and residuals values results in:  
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and 
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Table 1 - Values proposed for Peak and Residual State  

 Peak Residual 

φ    φp φr 

α    0 φr 

β    φp 0 

σci 7γQ
1

3   or   
2cp cosϕ p

1− sinϕ p

 2cr cosϕr

1− sinϕr

 

 
In this formulation the value of UCS is directly put as a parameter. The advantage of 
inputting the value directly is that it can be modified in the formulation without 
changing the FISH code every time. This way, the problem can be solved using the 
peak and residual parameters that could describe the behaviour of an elastic rock mass 
and transform the formulation of the failure criteria at plasticity. 
 

3.3 Solution Scheme 

 

In each step to compute the stresses, these are evaluated, transformed in principal 
stresses and ordered.  
 
FLAC chooses a guess elastic strain increment and calculates the corresponding stress 
increments applying the Hooke's Law. The incremental stresses are given below: 
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                                                                                        13( )

  
 where α1 = K + 4G / 3 and α2 = K − 2G / 3 

 
After this step, it is evaluated whether the new three components violate the yield 
criterion given by Equations 14 and 15 for shear or tension. 
 
Shear Yield function    fs = σ1 − N 'φ σ 3 +σ 'ci   

   
 

Tension Yield function  ft = σ t −σ 3             
    

 

The equation for the bisector of the angle originated by the tension and the shear yield 
function is given as: 
 

     
h σ1,σ 2,σ 3( ) = σ 3 −σ t −α P σ1 −σ P( )     

 
 

(12) 

(14) 

(15) 

(16) 
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Fig. 3 - Domains for a specific σ2 value
 

 
where 

    
σ p = N 'φ + 1+ N 'φ( )

2

     and     α P = N 'φ σ t −σ 'ci 
 

Equations 14, 15 and 16 are shown in a graphical form in Figure 4 in a two dimensional 

plot between σ1 and σ3 for a particular value of σ2. A three dimensional plot is actually 
needed to represent the zones of failure or no failure but for the sake of simplicity a two 
dimensional plot is shown.  By locating a stress point on this figure one can make out 
in which zone it lies. If the sign of fs and h are negative, shear failure takes place, when 
h is positive and ft negative, tensile failure takes place and no failure when both h and fs 
are positive. 
 
The violation of the yield criterion means that FLAC calculated a point beyond the 
yield function and plastic deformation takes place (ep > 0). A correction is needed to 
move it back to the yield boundary (the guess elastic strain increment was not elastic). 
 
The treatment of the tensile failure is the same as in Mohr-Coulomb constitutive model 
in FLAC. Therefore only shear failure correction is applied in the present study.

  
 
Starting from the flow rule's formulation given as: 
 

 

∆ei

p = λ s ∂gs

∂σ i

                                                                                                                               17( )  

 
gs = σ1 − Nψσ 3                                                                                                                               18( ) 

 

Where gs is the Shear potential function and  λs as unknown. In this function σ2 is 
absent because, although not constant in the entire domain, it is a constant value for a 
particular zone. The elastic guess increments in the three directions are given as: 
 

 

∆e1

p = λ s                

∆e2

p = 0                                                                                                                                              

∆e3

p = −Nψλ s        
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
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 where          Nψ =
1+ sinψ

1− sinψ  

The total increment applied at the beginning must be separated from its plastic part, 
which is calculated with the flow rule (Equation 17) and then substituted in Equation 
21 that gives the value of elastic strain in the incremental expression of the Hooke's law 
to be used for computing the principal stresses (Equation 22): 
 

 
∆ei = ∆ei

e + ∆ei

p            i =1, 2,3                                                                                                  20( )  
 

 
∆ei

e = ∆ei − ∆ei

p                                                                                                                          21( ) 
 

 

∆σ1 = α1∆e1 +α2 ∆e2 + ∆e3( ) − λ s α1 −α2Nψ( )

∆σ 2 = α1∆e2 +α2 ∆e1 + ∆e3( ) − λ sα2 1− Nψ( )

∆σ 3 = α1∆e3 +α2 ∆e1 + ∆e2( ) − λ s −α1Nψ +α2( )













                                                                      22( )  

 

The stress increment values are used to compute the new values of stresses as given by 
the equation given below: 
 

 

σ1

New = σ1

I − λ s α1 −α2Nψ( )
σ 2

New = σ 2

I − λ sα2 1− Nψ( )     

σ 3

New = σ 3

I − λ s −α1Nψ +α2( )










                                                                                                23( )

 

The superscript New means new values and I is used to represent the principal stresses 
obtained by adding the guess elastic strain to the initial principal stresses field. The 
second part of the expression is the stress component due to the plastic strain 
correction.  
 

The value of  λs now can be computed by using the new values of stresses using 
Equation 23 and substituted in shear yield function given by Equation 14. The right 
hand side of the equation is equated to zero to ensure that the point lies on the shear 

failure yield line, since the point cannot lie above that. The value of  λs is obtained as: 
 

 λ S =
fs σ i

I( )
α1 −α2 Nψ − Nφ −α1Nψ +α2( )

                                                                                           24( )  

 

Now FLAC can compute the new stress field and repeat again until the value of the 
maximum unbalanced force of the system reduces to a negligible value and thus a static 
solution is obtained. 
 
3.4 Comparison of Numerical and Analytical Results  

 

In the present study an example is considered for which the geometrical configuration 
is shown in Fig. 5. The numerical values of various parameters used for this problem 
are presented in Table 2. This example has been used to validate the implementation of 
the polyaxial constitutive model in the finite difference code in FLAC. The results of 
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this study for this particular example are compared with the results obtained by Elasto-
Plastic theory of stress distribution in broken zone zone in squeezing ground conditions 
as suggested by Singh et al. (2006). 
 

 

Fig. 4 - Geometrical configuration of the model 

 

Table 2 - Data of the numerical problem 

ri 3.2 [m] Q 0.001 
    

distance of 
boundaries 

32 * ri [m] γ 27 [kN/m3] 

    

φp 30 [°] Pv 15 [MPa] 
    

φr 20 [°] Pi 1.52 [MPa] 
    

cp 2 [MPa] qcmass 1.89 [MPa] 
    

cr 0.1 [MPa] λ 1 
    

E 5 [GPa]   
    

ν 0.25   

 
The analytical solution of the above problem has been obtained with the spreadsheet 
presented in Appendix A.  
 
Results of analytical and numerical stress distribution computation are shown in Fig. 6.  
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Fig. 5 - Comparison of analytical and numerical FLAC solution for the tunnel  
problem in Fig. 3 

 
The figure shows generally good agreement between the results obtained by two 
methods.  It can be observed that the predictions are very good up to a certain distance 
and beyond a certain distance. There is some problem at the boundary of the plastic 
zone where the predictions cannot be made at all due to the inherent drawbacks of 
using finite difference method and FLAC. The mesh could not be refined further in this 
region due to the limitation of the software. The difference in the stresses computed by 
two different methods at various distances in percentages is reported in appendix in 
Table A-1. 
 
4. CONCLUSIONS 

 
The elasto-plastic polyaxial model produced in this paper introduces an alternative to 
design tunnels in squeezing rock masses. A new relationship between the principal 
stresses and uniaxial compressive strength is suggested in this work, which can handle 
both the elastic and plastic zone according to Singh's Theory by appropriately choosing 
the parameters. The proposed relationship is used to bring out the effect of intermediate 
principal stress as the development of principal stresses in an underground opening. 
Through an example it is shown that the effect of the intermediate principal stress 
contributes to the enhancement of the peak characteristics of the underground 
excavation. 
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List of Symbols 

 

r, ri, rp:  Distance from the centre of the tunnel, internal and plastic radius;  
ee, ep, e:  Elastic and Plastic Strain 

K, G, ν, E:  Bulk, Shear, Poisson's, Young's modulus;  
Q:  Barton's rock mass quality ;   

γ:  Rock mass unit weight (g/cc); 

σ1, σ2, σ3:  Maximum, Intermediate, Minimum principal stress;  

σt:  Tension Cut; 

σr, σθ, τθρ, Pz:  Stress distribution around a tunnel in Radial, Tangential directions and 
along the Tunnel direction; 

Pv, Ph, λ:  Overburden pressure, Horizontal pressure, Horizontal ratio;  

qcmass, qcr, σci:  Peak, Residual, Uniaxial compressive strength; 

φp, φr, φ:  Peak, Residual, internal friction angle;   
cp, cr, c:  Peak, Residual, Cohesion;  

ψ:  Dilation angle;    

θ:  Angle between the horizontal axis of a tunnel and the line between its 
centre and point considered.  
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APPENDIX A: SPREADSHEET FOR THE IMPLEMENTATION OF THE 

TUNNEL SOLUTION 

 

Geometrical Data and Strength Parameter  Determination of Pi 
 

γ 27.0 kN/m3  ri 1.5 m  Pb 4.37 MPa 
           

Q 0.001   rp 8.0 m  Pi 1.52 MPa 
           

φp 30.0 °  Pv 15.0 MPa     
           

φr 20.0 °  Pz 15.0 MPa     
           

cp 2.0 MPa  λ 1.0      
           

cr 0.1 MPa         

 

Extract from the spreadsheet for the implementation of the stress distribution around 
circular openings subjected to symmetrical loading: 

Table A-1 
 

 

Flac Theoretical Difference 

r σσσσr/Pv σσσσt/Pv σσσσr/Pv σσσσt/Pv Radial Tangential 

3.59 0.1186 0.2609 0.1161 0.2559 2.1162% 1.9434% 

4.36 0.1497 0.3236 0.1465 0.3179 2.1755% 1.8026% 

5.15 0.1807 0.3840 0.1774 0.3809 1.8515% 0.8141% 

5.94 0.2125 0.4524 0.2088 0.4450 1.7605% 1.6720% 

6.74 0.2453 0.5193 0.2407 0.5099 1.9201% 1.8371% 

7.55 0.2813 0.5927 0.2730 0.5759 3.0231% 2.9087% 

8.36 0.3586 1.6500 0.3512 1.6488 2.1048% 0.0733% 

9.19 0.4706 1.5440 0.4624 1.5376 1.7746% 0.4159% 

9.94 0.5497 1.4660 0.5406 1.4594 1.6849% 0.4517% 

10.62 0.6071 1.4100 0.5979 1.4021 1.5448% 0.5609% 

11.30 0.6546 1.3620 0.6448 1.3552 1.5188% 0.5022% 

11.99 0.6946 1.3230 0.6845 1.3155 1.4738% 0.5710% 

12.69 0.7284 1.2890 0.7184 1.2816 1.3980% 0.5740% 

13.40 0.7572 1.2600 0.7474 1.2526 1.3096% 0.5918% 

14.11 0.7821 1.2350 0.7722 1.2278 1.2830% 0.5858% 

14.83 0.8036 1.2140 0.7938 1.2062 1.2377% 0.6446% 

15.56 0.8224 1.1950 0.8127 1.1873 1.1970% 0.6462% 

16.29 0.8389 1.1780 0.8291 1.1709 1.1838% 0.6051% 

17.04 0.8535 1.1640 0.8438 1.1562 1.1496% 0.6746% 

17.79 0.8664 1.1510 0.8567 1.1433 1.1332% 0.6728% 

18.54 0.8778 1.1400 0.8681 1.1319 1.1230% 0.7113% 

19.31 0.8882 1.1290 0.8784 1.1216 1.1197% 0.6567% 

20.08 0.8973 1.1200 0.8875 1.1125 1.1025% 0.6755% 

Average 1.573% 0.895% 
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APPENDIX B: FISH Code  

* ----------------------------------------- 
* FISH version of Singh model with 
* strain hardening/softening 
* ----------------------------------------- 
set echo off 
def b_singh 
  constitutive_model 
  f_prop  m_g m_k m_fric m_dil m_ten  
  f_prop  m_beta m_delta  m_q 
  f_prop  m_ftab m_ttab m_ind m_epdev m_epten 
  f_prop  m_btab m_dtab m_qtab  
  f_prop  m_e1 m_e2 m_x1 m_sh2  
  f_prop  m_npsi m_nphi m_csnp m_qdelta  
; 
  float $sphi $spsi $s11i $s22i $s12i $s33i $sdif $s0 $rad $s1 $s2 $s3 
  float $si $sii $psdif $fs $alams $ft $alamt $cs2 $si2 $dc2 $dss 
  float $sdelta $sbeta 
  float $apex $epsav $tpsav $de1ps $de3ps $depm $eps $ept $epss 
  float $bisc $pdiv $anphi $tco 
  int   $icase $m_err $iftab $ittab  
  int   $ibtab $iqtab $idtab 
; 
  Case_of  mode 
; ---------------------- 
; Initialisation section 
; ---------------------- 
   Case 1 
; --- put initial table values in prop arrays ---- 
     if m_epdev = 0.0 then 
        if m_epten = 0.0 then 
           $iftab = int(m_ftab) 
           $idtab = int(m_dtab) 
           $ittab = int(m_ttab) 
           $ibtab = int(m_btab) 
           $iqtab = int(m_qtab) 
 
           if $iftab # 0 then 
              m_fric = table($iftab, 0.0) 
           end_if 
           if $idtab # 0 then 
              m_delta  = table($idtab, 0.0) 
           end_if 
           if $ittab # 0 then 
              m_ten  = table($ittab, 0.0) 
           end_if 
           if $ibtab # 0 then 
              m_beta  = table($ibtab, 0.0) 
           end_if 
           if $iqtab # 0 then 
              m_q  = table($iqtab, 0.0) 
           end_if 
        end_if 
     end_if 
; --- data check --- 
      $m_err = 0 
      if m_fric > 89.0 then 
        $m_err = 1 
      end_if 
      if m_ten < 0.0 then 
        $m_err = 2 
      end_if 
      if m_beta < 0.0 then 
        $m_err = 3 
      end_if 
      if m_delta < 0.0 then 
        $m_err = 4 
      end_if 
      if $m_err # 0 then 
         nerr = 126 
         error = 1 
      end_if 
; 
      $sphi    = sin(m_fric * degrad) 
      $sdelta  = sin(m_delta * degrad) 
      $sbeta   = sin(m_beta * degrad) 
      $spsi    = sin(m_dil * degrad) 
      m_npsi   = (1.0 + $spsi) / (1.0 - $spsi) 
      m_nphi   = (1.0 + $sbeta) / (1.0 - $sphi) 
      m_qdelta = $sdelta / (1.0 - $sphi) 
      m_csnp   = m_q - zs33  * m_qdelta; 
      m_e1    = m_k + 4.0 * m_g / 3.0 
      m_e2    = m_k - 2.0 * m_g / 3.0 
      m_sh2   = 2.0 * m_g 
      m_x1     = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - m_e2)*m_nphi  
      if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 
         $m_err = 5 

         nerr = 126 
         error = 1 
      end_if 
 ; --- set tension to prism apex if larger than apex --- 
 $apex = m_ten 
      if m_fric # 0.0 then 
            $apex = m_csnp / (m_nphi - 1) 
      end_if 
      m_ten = min($apex,m_ten) 
; 
    Case 2 
; --------------- 
; Running section 
; --------------- 
      zvisc = 1.0 
      if m_ind # 0.0 then 
        m_ind = 2.0 
      end_if 
      $anphi = m_nphi 
; --- get new trial stresses from old, assuming elastic increments --- 
      $s11i = zs11 + (zde22 + zde33) * m_e2 + zde11 * m_e1 
      $s22i = zs22 + (zde11 + zde33) * m_e2 + zde22 * m_e1 
      $s12i = zs12 + zde12 * m_sh2 
      $s33i = zs33 + (zde11 + zde22) * m_e2 + zde33 * m_e1 
      $sdif = $s11i - $s22i 
      $s0   =  0.5 * ($s11i + $s22i) 
      $rad  =  0.5 * sqrt ($sdif*$sdif + 4.0 * $s12i*$s12i) 
; --- principal stresses --- 
      $si    =  $s0 - $rad 
      $sii   =  $s0 + $rad 
      $psdif =  $si - $sii 
; --- determine case --- 
      section 
        if $s33i > $sii then 
; --- s33 is major p.s. --- 
          $icase = 3 
          $s1    = $si 
          $s2    = $sii 
          $s3    = $s33i 
          exit section 
        end_if 
        if $s33i < $si then 
; --- s33 is minor p.s. --- 
          $icase = 2 
          $s1    = $s33i 
          $s2    = $si 
          $s3    = $sii 
          exit section 
        end_if 
; --- s33 is intermediate --- 
        $icase = 1 
        $s1    = $si 
        $s2    = $s33i 
        $s3    = $sii 
      end_section 
; 
        section 
; --- shear yield criterion --- 
        $fs    = $s1 - $s3 * $anphi + m_csnp  
   $alams = 0.0 
; --- tensile yield criterion --- 
        $ft    = m_ten - $s3 
        $alamt = 0.0 
; --- tests for failure --- 
        if $ft < 0.0 then 
           $bisc = sqrt(1.0 + $anphi * $anphi) + $anphi 
           $pdiv = -$ft + ($s1 - $anphi * m_ten + m_csnp) * $bisc 
           if $pdiv < 0.0 then 
; ---      shear failure --- 
              $alams = $fs / m_x1 
              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 
              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 
              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 
              m_ind = 1.0 
           else 
; ---      tension failure --- 
              $alamt = $ft / m_e1 
              $tco= $alamt * m_e2 
              $s1 = $s1 + $tco 
              $s2 = $s2 + $tco 
              $s3 = m_ten 
              m_ind = 3.0 
           end_if 
        else 
           if $fs < 0.0 then 
; ---      shear failure --- 
              $alams = $fs / m_x1 
              $s1 = $s1 - $alams * (m_e1 - m_e2 * m_npsi) 
              $s2 = $s2 - $alams * m_e2 * (1.0 - m_npsi) 
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              $s3 = $s3 - $alams * (m_e2 - m_e1 * m_npsi) 
              m_ind = 1.0 
           else 
; ---      no failure --- 
              zs11 = $s11i 
              zs22 = $s22i 
              zs33 = $s33i 
              zs12 = $s12i 
              exit section 
           end_if 
        end_if 
; --- direction cosines --- 
        if $psdif = 0.0 then 
          $cs2   = 1.0 
          $si2   = 0.0 
        else 
          $cs2   = $sdif       / $psdif 
          $si2   = 2.0 * $s12i / $psdif 
        end_if 
; --- resolve back to global axes --- 
        case_of  $icase 
          case 1 
            $dc2  = ($s1 - $s3) * $cs2 
            $dss  =  $s1 + $s3 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s1  - $s3) * $si2 
            zs33  = $s2 
          case 2 
            $dc2  = ($s2 - $s3) * $cs2 
            $dss  =  $s2 + $s3 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s2  - $s3) * $si2 
            zs33  = $s1 
          case 3 
            $dc2  = ($s1 - $s2) *$cs2 
            $dss  =  $s1 + $s2 
            zs11  = 0.5 * ($dss + $dc2) 
            zs22  = 0.5 * ($dss - $dc2) 
            zs12  = 0.5 * ($s1  - $s2) * $si2 
            zs33  = $s3 
        end_case 
        zvisc = 0.0 
; --- accumulate hardening parameter increments --- 
        if m_ind = 1.0 then 
           $de1ps = $alams 
           $de3ps = -$alams * m_npsi  
           $depm  = ($de1ps + $de3ps) / 3.0 
           $de1ps = $de1ps - $depm 
           $de3ps = $de3ps - $depm 
           $eps =  
 $eps+sqrt(0.5*($de1ps*$de1ps+$depm*$depm+$de3ps*$de3ps)) 
        end_if 
        if m_ind = 3.0 then 
           $ept = $ept - $alamt 
        end_if 
      end_section 
 
      $epsav = 0.0 
      $tpsav = 0.0 
      if zsub > 0.0 then 
           $epsav = $eps / zsub 
           $tpsav = $ept / zsub 
; --- reset for the next zone --- 
           $eps   = 0.0 
           $ept   = 0.0 
      end_if 
; --- softening/hardening --- 
      if $epsav > 0.0 then 
         $epss = m_epdev + $epsav 
         $iftab = int(m_ftab) 
         $idtab = int(m_dtab) 
         $ibtab = int(m_btab) 
         $iqtab = int(m_qtab) 
         if $iftab # 0 then 
            m_fric = table($iftab, $epss) 
         end_if 
         if $ibtab # 0 then 
            m_beta  = table($ibtab, $epss) 
         end_if 
           if $idtab # 0 then 
              m_delta  = table($idtab, $epss) 
           end_if 
           if $iqtab # 0 then 
              m_q  = table($iqtab, $epss) 
           end_if 
; --- data check --- 
         $m_err = 0 
         if m_fric > 89.0 then 

         $m_err = 1 
         end_if 
       if m_beta < - 1.0 then 
         $m_err = 3 
  if m_d < 0.0 then 
  $m_err = 4 
  end_if 
         end_if 
         if $m_err # 0 then 
            nerr = 126 
            error = 1 
         end_if 
; 
         m_epdev = $epss 
; 
      $sphi    = sin(m_fric * degrad) 
      $sdelta  = sin(m_delta * degrad) 
      $sbeta   = sin(m_beta * degrad) 
      $spsi    = sin(m_dil * degrad) 
      m_npsi   = (1.0 + $spsi) / (1.0 - $spsi) 
      m_nphi   = (1.0 + $sbeta) / (1.0 - $sphi) 
      m_qdelta  = $sdelta / (1.0 - $sphi) 
      m_csnp   = m_q - zs33  * m_qdelta 
m_x1    = m_e1 - m_e2*m_npsi + (m_e1*m_npsi - m_e2)*m_nphi 
; 
 if abs(m_x1) < 1e-6 * (abs(m_e1) + abs(m_e2)) then 
            $m_err = 5 
            nerr = 126 
            error = 1 
         end_if 
; --- reset tension to prism apex if larger than apex --- 
         $apex = m_ten 
         if m_fric # 0.0 then 
            $apex = m_csnp / (m_nphi - 1) 
         end_if 
         m_ten = min($apex,m_ten) 
      end_if 
      if $tpsav > 0.0 then 
         $epss = m_epten + $tpsav 
         $ittab = int(m_ttab) 
         if $ittab # 0 then 
            m_ten  = table($ittab, $epss) 
         end_if 
         m_epten = $epss 
         if m_ten < 0.0 then 
            $m_err = 4 
            nerr = 126 
            error = 1 
         end_if 
      end_if 
 
    Case 3 
; ---------------------- 
; Return maximum modulus 
; ---------------------- 
      cm_max = m_k + 4.0 * m_g / 3.0 
      sm_max = m_g 
    Case 4 
; --------------------- 
; Add thermal stresses 
; --------------------- 
      ztsa = ztea * m_k 
      ztsb = zteb * m_k 
      ztsc = ztec * m_k 
      ztsd = zted * m_k 
  End_case 
end 
set echo=on 
 


