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ABSTRACT

A general solution for stress distribution in akdlsaded by radial stresses
applied over two opposite arcs shows that the timeof principal axes in the
points of the main diameter near the loaded aroshbeadifferent from this
diameter. For regular sine-type fluctuationssgf, the zone of their influence
approaches the loaded arcs when the frequencydiétions increases. This
can lead to higher stress gradients in the vicioitghe loaded arcs to cause
complicated fracture paths in these areas. Theienfle of high-frequency
oscillations ofo,; (about 100 sine-wave lengths on the loaded arcihen
orientation of principal axes in the points of tmain diameter is negligible
both in central and peripheral parts of the diskwifrequency oscillations
(<10 sine-wave lengths on the loaded arc) can fagnitly contribute to the
stress distribution and principal axes orientatiothe vicinity of the contacts.
The deviation of the principal axis from perpendacuo the main diameter is
about 30° in the vicinity of the loaded arcs, it tamplitude of the load
oscillation is 10% of the main load. This anglereases to approximately 40°
with increasing amplitude of the oscillation. Tdugmt with higher stress
gradients, this must contribute to complicatedtfrex paths in the vicinity of
the disk-platen contacts. The influence of low-frecy oscillations on the
orientation of principal axes in the central paft tbe main diameter is
negligible. The results confirm the relatively cstesnt fracture mode observed
in Brazilian tests.

Key Words: Brazilian test, load fluctuation, tensile strdmdtacture.



80 J. OF ROCK MECHANICS & TUNNELLING TECH. VOL.7 No.2, 2001

1. INTRODUCTION

Brazilian test is one of the most widespread methéat indirect tensile
strength measurement of rocks. The method invateespressive loading of a
rock disk in the direction of one of its diametenghich is called the main
diameter in the following text (Fig.1a). Along arpaf the main diameter,
tensile stress acts in the direction perpendictdathe diameter. This tensile
stress induces a tensile fracture (macro-crackchvié usually believed to
propagate when the tensile stress reaches théetstreingth of rock. The crack
propagates in an unstable manner along approxiyngiel main diameter or
with some deviations (Fig.1b) (Jaeger and Cook9)196

Main
diamete

a b
Fig. 1: Disk-shaped rock sample between loadintepk&a

Since it was proposed, the Brazilian test has mtdeebe a simple, fast and
relatively reliable technique for tensile strengitimation of rocks. It is widely

used in rock mechanics laboratories all over thedvboth in research work

and routine tests. During the test, a rock speciménaded either between the
platens of the testing machine without any insdxgyween specially designed
jaws (Bieniawski and Hawkes, 1978), or hardboargiits are placed between
the disk circular boundary and the loading platensiake the load distribution

more or less uniform (Colback, 1966; Van de Stewh\Wevers, 1998; Van de
Steen et al., 1998). The use of different typekadl distributors can give rise
to rather complicated fracture paths in Braziliest$ (Colback, 1966).

For the calculation of the tensile strength frone tmeasured ultimate
compressive load, results of the linear elastic maation of the stress field in
a disk are used. In the commonly used exact solaidhe theory of elasticity,
stress distributions at the upper and bottom baueslaf the disk are assumed
either in the form of point loads or uniformly dibuted (constant) radial
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pressure (Fairhurst, 1964; Colback, 1966; JaegeiCook, 1969; Chen et al.,
1998). By using numerical simulations, other loadtributions like for
example trapezoidally distributed load have beempleyed (Van de Steen,
1999).

yA

2

Fig. 2 : Polarq, 6) and Cartesiarx(y) coordinate systemsf2
indicates the arc over which the applied load $sritiutec

In case of a disk of radiu’k=1 loaded by uniform (constant) normal stréss
applied over two opposite arc$,2the stresses in the points of the main
diameter §=n/2) are given in Cartesian coordinates (Fig.2) bgefer and
Cook, 1969)
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Here and in the following text, tensile stresses positive as it is usually
adopted in the theory of elasticity. The appliednpeessive load® in the
Brazilian test is negative.

In rock mechanics practice, the applied load distron can differ from
uniform, and can be characterized by irregularatamns of radial stress around
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a certain mean value. This can be due for exanplihe roughness of the
sample circumference or of the inserts, to the @eanstructure and, hence,
elastic inhomogeneity of rock, or to the inhomoggnef the inserts with
respect to their elastic properties. It is ofterlidved that radial stress
fluctuations do not effect the stress field in thajor part of the disk (Fairhurst,
1964). The aim of this paper is to verify this agption in an analytical way as
well as to estimate the effect of the radial stressillations on the stress
distribution and principal axes orientation in fin@cture zone along the main
diameter.

2. SOLUTION FOR GENERAL TYPE OF o, —FLUCTUATION
AROUND A ZERO LEVEL

Consider a disk of radiuB=1 loaded over two opposite arcs by distributed
radial stresses as follows:

3n

i 3n
Ofor0<0<s=-B;=+B<0<—-B;—+B<0O<2
BZ p > B > B T

n
2
T T T
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(2) o ( 2) 213 2B

3n 3n 3n
f(0—-—)for—-B<0<s—+
( 2) > B 5 p

Here,r and0 refer to the polar coordinate systerfi;i? the arc loaded (Fig.2).
Positive values of(0) correspond to tension. For the sake of simplidite
distribution ofc,, is assumed to have central symmetry as it is feem Eq.

B
(2). Moreover, assumf-p)=f()=0 and J f(y)dy =0. The latter equation
B

means that only stress deviations from the avevafiee are considered, with
the mean value being zero.

Find the stress field satisfying the boundary cbodi (2), using complex

potentials method. Stresses in Cartesian coordin&ig.2) can be expressed
through the complex potentia4gz) andy(z), being analytic functions of the
complex variable, as follows (Muskhelishvili, 1963):

6, t0, =4Rep'(2)
)

Gy =0 +2i0,, =229"(2) + V' (2)

where z=x+iy=re’ andx, y are Cartesian coordinates as shown in Fig. 2. Re
refers to the real part of the expression by witichfollowed.

The main vector of the forces acting on the boupdaequal to zero. Hence,
the potentialsp(z) andy(z) are holomorphic functions and can be represented
by Laurent expansions as follows:
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4) 0o(2) = iak z
© v =3 bz

Let the boundary condition (2) be expanded as gtexourier series:
(6) Grr r=1 = zakeike
k=—o00

B
where o, :Z—ttjc"(\',)e-ikwd\y. Due to the above-described properties of

B
B .
6,(0), 45=0, Gy =0, 0y =(-)" G| f(y)e™™dy. Thus Fourier
T
B

expansion of the fluctuation function is given by

-1 . +00 )
(7) Orrfras = Z("Zme2Ime +Za2mezme
m=—co m=1

Calculating the derivatives of(z2) and y(z) and substituting them in the
boundary condition (Muskhelishvili, 1963)

8) 60l =0’ @D +9' @) -[29" @) +v' @)
results in the equation for finding coefficiemsb:
-1 +00 +00
ZazmeZirﬂa + zazmeZirﬂa = 2a1 + Z (1_ kZ)ak+leik9 +
m=—oo m=-1 k=1
) o o vo

+3 (k+Da,e™ - (k-1b_e"

k=1 k=2

When deriving (9), it was taken into account théd), ¢'(0) andy(0) can be
set equal to zero which yields immediatay0, Im a;=0 andby=0.

From (9), the complex potentials are derived ds\:



84 J. OF ROCK MECHANICS & TUNNELLING TECH. VOL.7 No.2, 2001

(P( ) Z 2m+1

2m + 1
(10)

(Z) Z 2m0'2m 2m—1

m-l

and, hence, the stresses in Cartesian coordinaesvan by:

Gy = 2 (0, COS2MP - ot SIN2MP)r " —

m=1

=2 m(r’™™ = r*™2)[a},, cos@m-2)6 - oy, sin(2m- 2)6]

m=1

(11) G,, =2) (0, COS2M - ay, SIN2mO)r" +

m=1

+2> m(r®™ =¥ )o, cos@m-2)6 - o, sin(2m - 2)6]

G,y = 2D . m(r?" = r?™ o} cos@m=—2)0 + al, Sin@m - 2)6]

m=1
wherea,,, = Rea,,, a,, =Ima,,.

For an even functiof(8), o, is zero along the main diametgraxis), i.e. for
0=n/2. However, in the reality, the distribution of the radi@&d over the
loading arcs may be arbitrary. E.g. for an odd fundifé), it follows from (11)
that o.=cy,=0 alongy-axis, but the shear stresg can be different from zero
and be given by

(12) Gy = Zio(—l)m”m(r2m -1 ol

m=1

In the center of the dis&,=—2a;,. This means that in a general casespf
fluctuation, the direction of the principal axes in the poiotsthe main
diameter y-axis) can be different from this diameter. The extent of this
influence in different parts of the main diameter will beneated in the next
section for a particular case @f—fluctuation given by a sine-function.
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3. PARTICULAR CASE OF ¢,—FLUCTUATION: SINE-
OSCILLATION

In order to illustrate the influence of—fluctuations on the stress distribution
and principal axes orientation in the disk, consider a particcdese of
fluctuation, namely that of sine-type. In this case, the bounctamdition (1)
can be re-written as follows:

Ofor0<0< —B;%+Bses3—;—ﬁ;3—;+ﬁs932n

n
2
13) o, = psin%”(ew-fjforﬁ-ﬁsesﬁw

DSIHF(9+[3-—jfor—-B<e<3_2n+B

Here,p has the meaning of the oscillation amplitude. Eoua13) implies that
n wave lengths are contained within the loadingdr2p. o, (6) given by (13)

is continuous in all points. In its Fourier-expamsiall o, are equal to zero,
and the stressesy, oyy, oxy as derived from (6), (11) and (13) are:

= +itj(—]_)rﬂ GM[BZ”‘ sin2mo —
m=1

m?p?
- mr®™ sin(2m - 2)6 + mr*™? sin(2m - 2)0]

(14) G, =3 (-D)" Eldmﬁﬁsﬂ [r2™ sin2mo +

+mr®™ sin(2m - 2)0 - mr®™ 2 sin(2m - 2)0]

Z( NI 4pmrﬁsm2m[3 EPMUPSIAATD feom-2 _ pom )cosem - 2)0

Along the main diamete®€n/2), ox=0y,=0. The shear stress, is different

from zero along the main diameter. Its value indbkater of the disk is given
by
(15) 4pnBsinZ

xy|r0 22 4B

E.g. for p=10MPa, p=11°, n=104=0.3 MPa. Forp=10MPa, f=11°, n=10
0x=0.03 MPa. Hence, even for the smallest value aha,shear stress in the
center of the disk does not exceed several peofethe amplitude of the,—
fluctuation on the boundary.
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The shear stress value given by (15) increasesimgtieasing loading angle

It can also be concluded from (15) that, with iasiegn, o, in the center
reduces. This means that with intensifying freqyeofos,—fluctuations on the
boundary, their influence on the stress distributamd orientation of principal
axes in the central part of the disk decreases Gbmclusion is illustrated in
Figures 3 and 4 where stress distributions aloegnthin diameter are plotted
for n=2 andn=8, respectively. Figures 3 and 4 show that witbreasing
frequency of fluctuations measured Iy the zone of influence reduces
dramatically and approaches the loaded arc of trmular boundary. The
magnitude of the stress field perturbation all owbe disk decreases
substantially with increasing. For instance, fon=2 the maximum absolute
value of o, on the main diameter is of the same order as lietuhtion
amplitudep (Fig.3). Fom=100, the maximum absolute valueogf on the main
diameter is by three order smaller th@a(Fig.5). This means that the effect of
high-frequency oscillations which are inevitablyegent in real Brazilian tests
due to the inhomogeneity of the contact areas witipect to elastic properties
of rock, can be neglected. This is one of the nemgdy the fracture path has a
relatively consistent form in Brazilian tests.

4, EFFECTS OF VARIATION OF NORMAL LOAD ON THE
PRINCIPAL STRESS DIRECTION

To illustrate the influence of low-frequency oszilbn on the orientation of
principal axes in Brazilian disks, calculate thglarbetween the principal axis
and the x-axis in the case when the sine-oscillation of aiugé p is
superposed on the constant normal load of v&lughe boundary condition
corresponding to this case is given by:

0for0<H< —B;%+BS9$3§—B:3—;+BSGSZW

Y
2
rr

.. 1N T T T
16 ={P+psin—|0+B-— [for=-B<O<—+
(16) o psi B( B 2) 2B 2 p

P+psin”—”(e+|3-ﬁjfor3—”-sses@ﬂs
B 2)° 2 2

The anglen between the direction of the major (tensile) gpatstress and the
x-axis is defined by

2
(17) tan2q = ——

whereasy is positive anti-clockwise.
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Fig. 3: Shear stress vs distance along the mamedex
(p=10MPa;p=11"; n=2)
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Fig. 4: Shear stressy vs distance along the main diameter
(p=10MPa;p=11’; n=8)
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and thex-axis vs distance along the main diameter
(P=-50 MPa;p=10MPa;3=11"; n=4
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Superposing the solutions given by (1) and (14he points of the main
diameter ¢=n/2) and substituting the resulting values of seess,, ¢, ¢

in Eq. (17) yields:

xy

(18) tan2q = 2~ P (L-2r'cosp + r4)§‘, MSIN2MB_ 2n-2
Psin2p Am*p? - n°n?

m=1

Analysis of Eq. (18) allows to conclude that thevidgon of the principal
direction from thex-axis increases with increasing rapi®. Forp=0, i.e. when
the normal load does not have any oscillationsytiee ofa is equal to zero,
I.e. the principal direction is perpendicular te thain diameter in all points of
it. A typical dependence of on the radius along the main diameter is shown in
Fig.6. In Fig. 6,P = -50 MPa,p=10 MPa,n=4, =11°. The dimension of the
influence zone does not exceedR).RAlong the part of the main diameter
where o4 is tensile, the deviation of the principal directi from the
perpendicular to this diameter is negligible. Thalue of o increases
substantially in the zone close to the loaded hArcthe example shown in
Figure 6 the value of increases to 38" in the narrow zone of abouRMéar
the arc loaded. This means that low-frequency lasicihs can considerably
affect the orientation of the principal axes in ttegrow zone near the contacts,
where both principal stresses are compressive, Tdgsther with other factors
(initial crack orientations, high compressive sig=y considered elsewhere
(Colback, 1966) can lead to complicated fractunethése areas.

The absence of the influence of low-frequency tmmins on principal
directions in the major (central) part of the mdiameter is one more reason of
the consistency of the fracture mode in Brazilestd.

The effect of low-frequency oscillation on principhrections orientation near
the contacts gradually decreases with increasieguincy of oscillations
measured by as well as with decreasing raptP. This is illustrated by Figs. 7
and 8. Figure 7 shows that even by a relatively @swillation amplitude of
10% of the mean value, the deviation of principaésafrom the directions
predicted by conventional theory (Eq. (1)) is cdesable (about 30°) in the
vicinity of the contact. The deviation of principakes fromx,y-directions
decreases to about 5° when the rafi® drops to 0.01 as it is seen in Fig. 8
(n=4, P=-50 MPa are the same in Figs. 6, 7 and 8). Theslteshows that by
relative amplitude of oscillation of the order @fl0%, the inclination of the
principal axes in the contact areas may be quiteeable making the fracture
development in these zones even more complicageditlis usually believed.

Plotting the dependencies @f, ce, Gr, Oxx, Oyy, Oxy VErsus radius for different
values of (i.e. along diameters inclined to the main diametethe disk)
shows that the dimension of the influence zone éumesl as a distance from
the loaded arcs) and the magnitude of the stregmtams from the values
predicted by conventional theory (Eg. (1)) alongesth diameters
unambiguously reduce with increasingThe deviations of stresses, cgo
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Fig. 7: Anglea between the major principal direction
and thex-axis vs radius along the main diameter
(P=-50 MPa;p=5MPa;p=11"; n=4)
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Fig. 8: Anglea between the major principal direction
and thex-axis vs distance along the main diameter
(P=-50 MPa;p=0.5MPa;=11"; n=4,
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inside the influence zone in the very vicinity bketloaded arcs remain of the
order ofp for any value oh. Taking into account the decreasing dimension of
the zone, this can produce increasing stress gradia the vicinity of the
loaded arcs. This must contribute to the extenBaeturing usually observed
near the loaded parts of the boundary.

5. CONCLUSIONS

A general solution for stress distribution in akdlsaded by radial stresses
applied over two opposite arcs of the circular larg shows that the direction
of principal axes in the zones of the main diamgtehe vicinity of the loaded
arcs can be substantially different from this digeneFor regular oscillations
of oy given by sine-functions, with increasing frequemafyoscillations, the
influence zone approaches the loaded arcs, anthdx@num deviations from
classical solutions in the major part of the digip@ach zero. Hence, when
calculating stress field in a Brazilian disk, thigtifrequency oscillations of
the applied radial load can be neglected as isiglly done. Low-frequency
oscillations ( of the order of 1+10 in Eq.(13)) can significantdgntribute to
the stress distribution and to the orientation rfiggpal axes in the vicinity of
the loading platens (Figs. 3 and 7). Their infleeran the central part is
negligible like the influence of high-frequency istions. The results help to
explain both relatively consistent fracture mode Bmazilian tests and
complicated fracture paths in the contact areas.
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