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ABSTRACT 
 
A general solution for stress distribution in a disk loaded by radial stresses 
applied over two opposite arcs shows that the direction of principal axes in the 
points of the main diameter near the loaded arcs can be different from this 
diameter. For regular sine-type fluctuations of σrr , the zone of their influence 
approaches the loaded arcs when the frequency of fluctuations increases. This 
can lead to higher stress gradients in the vicinity of the loaded arcs to cause 
complicated fracture paths in these areas. The influence of high-frequency 
oscillations of σrr (about 100 sine-wave lengths on the loaded arc) on the 
orientation of principal axes in the points of the main diameter is negligible 
both in central and peripheral parts of the disk. Low-frequency oscillations 
(<10 sine-wave lengths on the loaded arc) can significantly contribute to the 
stress distribution and principal axes orientation in the vicinity of the contacts. 
The deviation of the principal axis from perpendicular to the main diameter is 
about 30º in the vicinity of the loaded arcs, if the amplitude of the load 
oscillation is 10% of the main load. This angle increases to approximately 40º 
with increasing amplitude of the oscillation. Together with higher stress 
gradients, this must contribute to complicated fracture paths in the vicinity of 
the disk-platen contacts. The influence of low-frequency oscillations on the 
orientation of principal axes in the central part of the main diameter is 
negligible. The results confirm the relatively consistent fracture mode observed 
in Brazilian tests. 
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1. INTRODUCTION 
 
Brazilian test is one of the most widespread methods for indirect tensile 
strength measurement of rocks. The method involves compressive loading of a 
rock disk in the direction of one of its diameters, which is called the main 
diameter in the following text (Fig.1a). Along a part of the main diameter, 
tensile stress acts in the direction perpendicular to the diameter. This tensile 
stress induces a tensile fracture (macro-crack) which is usually believed to 
propagate when the tensile stress reaches the tensile strength of rock. The crack 
propagates in an unstable manner along approximately the main diameter or 
with some deviations (Fig.1b) (Jaeger and Cook, 1969). 
 

Main
diameter

a b  
 

Fig. 1: Disk-shaped rock sample between loading platens 
 
Since it was proposed, the Brazilian test has proved to be a simple, fast and 
relatively reliable technique for tensile strength estimation of rocks. It is widely 
used in rock mechanics laboratories all over the world both in research work 
and routine tests. During the test, a rock specimen is loaded either between the 
platens of the testing machine without any inserts, between specially designed 
jaws (Bieniawski and Hawkes, 1978), or hardboard inserts are placed between 
the disk circular boundary and the loading platens to make the load distribution 
more or less uniform (Colback, 1966; Van de Steen and Wevers, 1998; Van de 
Steen et al., 1998). The use of different types of load distributors can give rise 
to rather complicated fracture paths in Brazilian tests (Colback, 1966). 
 
For the calculation of the tensile strength from the measured ultimate 
compressive load, results of the linear elastic computation of the stress field in 
a disk are used. In the commonly used exact solution of the theory of elasticity, 
stress distributions at the upper and bottom boundaries of the disk are assumed 
either in the form of point loads or uniformly distributed (constant) radial 
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pressure (Fairhurst, 1964; Colback, 1966; Jaeger and Cook, 1969; Chen et al., 
1998). By using numerical simulations, other load distributions like for 
example trapezoidally distributed load have been employed (Van de Steen, 
1999). 
 

x

y

r

θ

2

Fig. 2 :  Polar (r, θ) and Cartesian (x, y) coordinate systems; 2β
indicates the arc over which the applied load is distributed

 
 
In case of a disk of radius R=1 loaded by uniform (constant) normal stress P 
applied over two opposite arcs 2β, the stresses in the points of the main 
diameter (θ=π/2) are given in Cartesian coordinates (Fig.2) by (Jaeger and 
Cook, 1969) 
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Here and in the following text, tensile stresses are positive as it is usually 
adopted in the theory of elasticity. The applied compressive load P in the 
Brazilian test is negative.  
 
In rock mechanics practice, the applied load distribution can differ from 
uniform, and can be characterized by irregular variations of radial stress around 
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a certain mean value. This can be due for example to the roughness of the 
sample circumference or of the inserts, to the granular structure and, hence, 
elastic inhomogeneity of rock, or to the inhomogeneity of the inserts with 
respect to their elastic properties. It is often believed that radial stress 
fluctuations do not effect the stress field in the major part of the disk (Fairhurst, 
1964). The aim of this paper is to verify this assumption in an analytical way as 
well as to estimate the effect of the radial stress oscillations on the stress 
distribution and principal axes orientation in the fracture zone along the main 
diameter. 
 
2. SOLUTION FOR GENERAL TYPE OF σrr –FLUCTUATION 

AROUND A ZERO LEVEL 
 

Consider a disk of radius R=1 loaded over two opposite arcs by distributed 
radial stresses as follows: 
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Here, r and θ refer to the polar coordinate system; 2β is the arc loaded (Fig.2). 
Positive values of f(θ) correspond to tension. For the sake of simplicity, the 
distribution of σrr is assumed to have central symmetry as it is seen from Eq. 

(2). Moreover, assume f(-β)=f(β)=0 and 0ψd)ψ(
β

β-

=∫ f . The latter equation 

means that only stress deviations from the average value are considered, with 
the mean value being zero. 
 
Find the stress field satisfying the boundary condition (2), using complex 
potentials method. Stresses in Cartesian coordinates (Fig.2) can be expressed 
through the complex potentials φ(z) and ψ(z), being analytic functions of the 
complex variable z, as follows (Muskhelishvili, 1963): 
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where z=x+iy=reiθ and x, y are Cartesian coordinates as shown in Fig. 2. Re 
refers to the real part of the expression by which it is followed.  
The main vector of the forces acting on the boundary is equal to zero. Hence, 
the potentials φ(z) and ψ(z) are holomorphic functions and can be represented 
by Laurent expansions as follows: 
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Let the boundary condition (2) be expanded as a complex Fourier series: 
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expansion of the fluctuation function is given by 
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Calculating the derivatives of φ(z) and ψ(z) and substituting them in the 
boundary condition (Muskhelishvili, 1963) 
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results in  the equation for finding coefficients ak, bk: 
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When deriving (9), it was taken into account that φ(0), )0(φ′  and ψ(0) can be 
set equal to zero which yields immediately a0=0, Im a1=0 and b0=0. 
 
From (9), the complex potentials are derived as follows: 
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and, hence, the stresses in Cartesian coordinates are given by: 
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where mm 22 αReα =′ , mm 22 αImα =′′ . 
 
For an even function f(θ), σxy is zero along the main diameter (y-axis), i.e. for 
θ=π/2. However, in the reality, the distribution of the radial load over the 
loading arcs may be arbitrary. E.g. for an odd function f(θ), it follows from (11) 
that σxx=σyy=0 along y-axis, but the shear stress σxy can be different from zero 
and be given by 
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In the center of the disk σxy= 2α2 ′′− . This means that in a general case of σrr–
fluctuation, the direction of the principal axes in the points of the main 
diameter (y-axis) can be different from this diameter. The extent of this 
influence in different parts of the main diameter will be estimated in the next 
section for a particular case of σrr–fluctuation given by a sine-function. 
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3. PARTICULAR CASE OF σrr–FLUCTUATION: SINE-
OSCILLATION 

 
In order to illustrate the influence of σrr–fluctuations on the stress distribution 
and principal axes orientation in the disk, consider a particular case of 
fluctuation, namely that of sine-type. In this case, the boundary condition (1) 
can be re-written as follows: 
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Here, p has the meaning of the oscillation amplitude. Equation (13) implies that 
n wave lengths are contained within the loading arc of 2β. σrr(θ) given by (13) 
is continuous in all points. In its Fourier-expansion, all m2α′  are equal to zero, 
and the stresses σxx, σyy, σxy as derived from (6), (11) and (13) are: 
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Along the main diameter (θ=π/2), σxx=σyy=0. The shear stress σxy is different 
from zero along the main diameter. Its value in the center of the disk is given 
by  

(15)                                      
2220 4β-π
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σ
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E.g. for p=10MPa, β=11˚, n=1 σxy=0.3 MPa. For p=10MPa, β=11˚, n=10 
σxy=0.03 MPa. Hence, even for the smallest value of n, the shear stress in the 
center of the disk does not exceed several percent of the amplitude of the σrr–
fluctuation on the boundary. 
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The shear stress value given by (15) increases with increasing loading angle β. 
It can also be concluded from (15) that, with increasing n, σxy in the center 
reduces. This means that with intensifying frequency of σrr–fluctuations on the 
boundary, their influence on the stress distribution and orientation of principal 
axes in the central part of the disk decreases. This conclusion is illustrated in 
Figures 3 and 4 where stress distributions along the main diameter are plotted 
for n=2 and n=8, respectively. Figures 3 and 4 show that with increasing 
frequency of fluctuations measured by n, the zone of influence reduces 
dramatically and approaches the loaded arc of the circular boundary. The 
magnitude of the stress field perturbation all over the disk decreases 
substantially with increasing n. For instance, for n=2 the maximum absolute 
value of σxy on the main diameter is of the same order as the fluctuation 
amplitude p (Fig.3). For n=100, the maximum absolute value of σxy on the main 
diameter is by three order smaller than p (Fig.5). This means that the effect of 
high-frequency oscillations which are inevitably present in real Brazilian tests 
due to the inhomogeneity of the contact areas with respect to elastic properties 
of rock, can be neglected. This is one of the reasons why the fracture path has a 
relatively consistent form in Brazilian tests. 

 
4. EFFECTS OF VARIATION OF NORMAL LOAD ON THE 

PRINCIPAL STRESS DIRECTION 
 
To illustrate the influence of low-frequency oscillation on the orientation of 
principal axes in Brazilian disks, calculate the angle between the principal axis 
and the x-axis in the case when the sine-oscillation of amplitude p is 
superposed on the constant normal load of value P. The boundary condition 
corresponding to this case is given by: 
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The angle α between the direction of the major (tensile) principal stress and the 
x-axis is defined by 
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whereas α is positive anti-clockwise. 
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Fig. 3: Shear stress vs distance along the main diameter 
(p=10MPa; β=11˚; n=2) 
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Fig. 4: Shear stress σxy vs distance along the main diameter 
(p=10MPa; β=11˚; n=8) 
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Fig. 5: Shear stress vs distance along the main diameter 
(p=10MPa; β=11˚; n=100) 
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Fig. 6:  Angle α between the major principal direction 
and the x-axis vs distance along the main diameter 

(P=-50 MPa; p=10MPa; β=11˚; n=4) 
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Superposing the solutions given by (1) and (14) in the points of the main 
diameter (θ=π/2) and substituting the resulting values of stresses xxσ , yyσ , xyσ  

in Eq. (17) yields: 
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Analysis of Eq. (18) allows to conclude that the deviation of the principal 
direction from the x-axis increases with increasing ratio p/P. For p=0, i.e. when 
the normal load does not have any oscillations, the value of α is equal to zero, 
i.e. the principal direction is perpendicular to the main diameter in all points of 
it. A typical dependence of α on the radius along the main diameter is shown in 
Fig.6. In Fig. 6, P = -50 MPa, p=10 MPa, n=4, β=11˚. The dimension of the 
influence zone does not exceed 0.1R. Along the part of the main diameter 
where σxx is tensile, the deviation of the principal direction from the 
perpendicular to this diameter is negligible. The value of α increases 
substantially in the zone close to the loaded arc. In the example shown in 
Figure 6 the value of α increases to 38˚ in the narrow zone of about 0.1R near 
the arc loaded. This means that low-frequency oscillations can considerably 
affect the orientation of the principal axes in the narrow zone near the contacts, 
where both principal stresses are compressive. This, together with other factors 
(initial crack orientations, high compressive stresses) considered elsewhere 
(Colback, 1966) can lead to complicated fractures in these areas. 
 
The absence of the influence of low-frequency oscillations on principal 
directions in the major (central) part of the main diameter is one more reason of 
the consistency of the fracture mode in Brazilian tests. 
 
The effect of low-frequency oscillation on principal directions orientation near 
the contacts gradually decreases with increasing frequency of oscillations 
measured by n as well as with decreasing ratio p/P. This is illustrated by Figs. 7 
and 8. Figure 7 shows that even by a relatively low oscillation amplitude of 
10% of the mean value, the deviation of principal axes from the directions 
predicted by conventional theory (Eq. (1)) is considerable (about 30˚) in the 
vicinity of the contact. The deviation of principal axes from x,y-directions 
decreases to about 5˚ when the ratio p/P drops to 0.01 as it is seen in Fig. 8 
(n=4, P=-50 MPa are the same in Figs. 6, 7 and 8). This result shows that by 
relative amplitude of oscillation of the order of n·10%, the inclination of the 
principal axes in the contact areas may be quite noticeable making the fracture 
development in these zones even more complicated than it is usually believed. 
 
Plotting the dependencies of σrr, σθθ, σrθ, σxx, σyy, σxy versus radius for different 
values of θ (i.e. along diameters inclined to the main diameter of the disk) 
shows that the dimension of the influence zone (measured as a distance from 
the loaded arcs) and the magnitude of the stress deviations from the values 
predicted by conventional theory (Eq. (1)) along these diameters 
unambiguously reduce with increasing n. The deviations of stresses σrr, σθθ  
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Fig. 7: Angle α between the major principal direction 
and the x-axis vs radius along the main diameter 

(P=-50 MPa; p=5MPa; β=11˚; n=4) 

Fig. 8: Angle α between the major principal direction 
and the x-axis vs distance along the main diameter 

(P=-50 MPa; p=0.5MPa; β=11̊ ; n=4) 
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inside the influence zone in the very vicinity of the loaded arcs remain of the 
order of p for any value of n. Taking into account the decreasing dimension of 
the zone, this can produce increasing stress gradients in the vicinity of the 
loaded arcs. This must contribute to the extensive fracturing usually observed 
near the loaded parts of the boundary. 
 
5. CONCLUSIONS 
 
A general solution for stress distribution in a disk loaded by radial stresses 
applied over two opposite arcs of the circular boundary shows that the direction 
of principal axes in the zones of the main diameter in the vicinity of the loaded 
arcs can be substantially different from this diameter. For regular oscillations 
of σrr given by sine-functions, with increasing frequency of oscillations, the 
influence zone approaches the loaded arcs, and the maximum deviations from 
classical solutions in the major part of the disk approach zero. Hence, when 
calculating stress field in a Brazilian disk, the high-frequency oscillations of 
the applied radial load can be neglected as it is usually done. Low-frequency 
oscillations (n of the order of 1÷10 in Eq.(13)) can significantly contribute to 
the stress distribution and to the orientation of principal axes in the vicinity of 
the loading platens (Figs. 3 and 7). Their influence on the central part is 
negligible like the influence of high-frequency oscillations. The results help to 
explain both relatively consistent fracture mode in Brazilian tests and 
complicated fracture paths in the contact areas. 
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