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ABSTRACT

A simple statistical relation to obtain the elastiodulus of jointed rocks and
thereby predicting their stress-strain responsetriaxial compression is
presented in this paper. This equation has beéredrfrom the multi variant
regression analysis of large amount of experimeatdtd reported in literature.
In this equation, the jointed rock is representea aontinuum material with
equivalent elastic modulus jjobtained from the properties of the intact rock
and joint factor (g. Joint factor is the integration of the propestad joints to
take care of the effects of frequency, orientatom strength of joint. The
equation presented in this paper is simple compaoedimilar equation
developed by earlier researchers. The effect offimiog pressure is also
incorporated in the equation thus facilitating tise of a single equation to use
for any confining pressure. This equation is incogbed in a commercial
finite difference program Fast Lagrangian AnalysfsContinua ELAC) to
carry out the equivalent continuum analysis of ethrock samples tested in
triaxial compression. The constitutive behaviouth®# rock is represented by
a confining stress dependant hyperbolic relatioth Wiohr-Coulomb failure
criterion. The numerical model has been validatgirest experimental results
from wide range of intact and jointed rock sampiéth different joint fabric
and joint orientation and for a wide range of comfg pressures (1 MPa to
155 MPa). Results showed that the stress-strailvesuiobtained from
numerical analysis are matching closely with th@egkmental stress-strain
curves for various intact and jointed rock samg@ekibiting linear to highly
nonlinear stress-strain behaviour. This study cordd that the numerical
model developed in the present study can effigresithulate the effects of
number of joints, strength of joint, orientation int, type of rock and
confining pressure.

Keywords: Rocks, intact, jointed, triaxial, stress-strainui@glent continuum,
numerical model
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1. INTRODUCTION

Natural discontinuities to some level are commomtdees of rocks.
Discontinuities in zones of high stresses nearraterground deep excavation
can provide planes for shear failure and displacemegll of the currently
accepted design methods for foundations, slopesiaddrground excavations
in rock masses require geometric and mechanicabrnrdtion of the
discontinuities. Determination of elastic moduluk jointed rocks is very
important for successful design of structures imv jointed rock masses.
Design methods can be categorized as analyticakraational or empirical.
Empirical methods assess the stability of strustimethe use of past practices
to predict future behaviour based upon factors nwiical towards the
design. In practice, it is almost impossible tolerp all of the joint systems or
to investigate all their elastic characteristicsl @xplicitly simulating them in
theoretical models. Thus employing empirical derorgs to model rock mass
as continuum with equivalent material properties pained acceptance over
the last fifteen years. The process that the asthave found to be of greatest
value is to employ equivalent continuum approadbo imumerical codes to
from a successful tool for the prediction of thehdn&our of jointed rock
masses.

Some equivalent continuum models were developesinwlate the jointed
rock mass by Singh (1973a, 1973b), Zienkiewica.gl1877), Gerrard (1982),
Cai and Horii (1992), Yoshida and Horii (1998), Oda al. (1993) and
Kawamoto et al. (1988). Some researchers have a@elempirical relations
to estimate the equivalent material propertiedefjbinted rock mass from the
geometrical and mechanical properties of discoiitegsl These equations can
be incorporated in other constitutive models fde@ive simulation of jointed
rock masses, e.g. Wei and Hudson (1986) BartonBardlis (1990), Hoek
and Brown (1997), Ramamurthy (1994), Sridevi anth&am (2000) and
Sitharam et al. (2001a). Most of these models aeeldped based on
laboratory triaxial testing of small jointed rocrsples. The equations based
on joint factor to estimate the equivalent elastmdulus for jointed rock mass
proposed by Ramamurthy (1994) and Sitharam e8D1@a) from extensive
laboratory testing of intact and jointed rock spesms are very simple and
practical among all the models stated above. Thegeations require the
estimation of two simple joint parameters, namély humber of joints in the
rock per meter depth and the inclination of modical joint set. Detailed
description of the model and design tables fomesiing the joint strength
parameter from the unconfined compressive strengtthe intact rock and
joint inclination parameter from the orientation tfe joint are given by
Ramamurthy (1994) and Sitharam et al. (2001a).

Ramamurthy (1994) developed two different equatiéms obtaining the
modulus ratio of jointed rocks, one equation foe thinconfined case
representing the uniaxial compression and the ofitvethe confined case,
representing the triaxial compression. The equagen for the modulus
ratio of jointed rock in triaxial compression cafisr the estimation of the
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elastic modulus of the jointed rock in uniaxial quession separately, which
in turn requires the estimation of the uniaxial poessive strength of jointed
rock. This involves total three equations to beduse obtain the elastic
modulus of a jointed rock sample in triaxial congsien. Sitharam et al.
(2001a) developed different equations to obtain éheestic modulus of a
sample at different confining pressures in triaxiampression. In the present
study, a single regression equation is developed fthe multi variant
regression analysis of the same data used by Rartigm(1994) and
Sitharam et al. (2001a), considering the confingtgess ¢s) as an extra
parameter. This equation is comparatively simpleéhim sense the effect of
confining pressure also is incorporated in the gqoathus making it very
simple to use for any confining pressure in triaxtmmpression. This
regression equation is incorporated in the comrakréinite difference
program Fast Lagrangian Analysis of ContinBBAC] (Cundall, 1976; Itasca,
1995), that is widely used for modeling of rock s®s The triaxial
compression tests carried out on different rockh wifferent joint parameters
at different confining pressures are simulate&lAC, the elastic modulus of
the jointed rocks obtained using the new regressmpmation developed from
the present study. The results are presented ifotheof stress-strain curves.
The results from the numerical analysis are congparigh the results from
laboratory triaxial compression tests.

2. NEW REGRESSION EQUATION

Various researchers have established statistittiaes to express the elastic
modulus of jointed rocks in terms of the joint pasters and the elastic
moduli of the corresponding intact rocks. Ramamuftp94) provided
exponential relations to express the elastic madafyointed rock in terms of
a joint factor, g and the confining stresgz. These relations were developed
based on laboratory studies on numerous artifigats reported by Roy
(1993), Arora (1987), Yaji (1984) and Einstein adidschfield (1973). Joint
factor for a given jointed rock can be estimatedeohon the joint frequency
(Jy), orientation of the jointg3) with respect to the direction of major principal
stress and the strength of the joint. The jointdador given jointed rock is
estimated using the following equation:

3= W

nr

Where, dis number of joints per meter depth, ‘n’is thelination parameter
depending on the orientation of the joit ‘r' is the roughness or joint
strength parameter depending on the joint conditibine value of ‘n’ is
obtained by taking the ratio of log (strength rethrg at B =9C° to log
(strength reduction) at the desired valuefofThis inclination parameter is
independent of joint frequency. The values of ‘ré &r various orientation
angles and the joint strength parameter ‘r’ forimas uniaxial compressive
strengths of intact rock are given by Ramamurti894) based on extensive
laboratory testing and are listed in Tables 1 and 2
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Table 1 - Joint inclination parameter ‘n’ for diféant3
[after Ramamurthy (1994)]

Orientation of joinf3 in degrees  Joint inclination parameter ‘n’

0 0.82
10 0.46
20 0.11
30 0.05
40 0.07
50 0.31
60 0.46
70 0.63
80 0.82
90 1.00

Table 2 - Values of ‘r’ for different values of; [after Ramamurthy, (1994)]

Uniaxial compressive strength of

intact rock,o (MPa) Joint strength parameter, r

2.5 0.30
5.0 0.45
15.0 0.60
25.0 0.70
45.0 0.80
65.0 0.90
100.0 1.00

The equation for obtaining the elastic modulus oihted rock for any
confining pressuresin triaxial compression is given by Ramamurthy @09
as

Ej(03=0)

ool

In the above equation,; fo3=0) is the elastic modulus of the jointed rock in
uniaxial compression, which can be calculated ugiegollowing equation.

)

Ejz

Ej(03=0)= exp(-1.15x 102 ) )Ei (03=0) 3)

Where E (03=0) is the elastic modulus of the intact rock iniaxral
compression. In equation (1% is the uniaxial compressive strength of
jointed rock given as
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¢ = expl-0.008J) ) ag (4)

Where o.; is the uniaxial compressive strength of intactkrothe set of
statistical relations given by Sitharam et al. (28)0for estimating the elastic
modulus of jointed rock at different confining psases are represented as

Ej =exp(-axJ; ) (5)

Where ‘a’ is an empirical constant determined frima statistical curve fit

analyses for the experimental data afid the joint factor. The value of ‘a’ for
three different confining pressures is given in[€ah For confining pressures
other than those listed in Table 3,duld be interpolated or extrapolated.

Table 3 - Value of the constant ‘a’ for differemindining
Pressures [after Sitharam et al. (2001a)]

Confining pressure Value of ‘a’
(MPa)
1.C -0.011¢
5.C - 0.010¢
7.C - 0.008:

The estimation of elastic modulus of jointed roding Eq. 5 requires the

estimation of the coefficient 'a’ for different diming pressures. Moreover,

the linear interpolation for obtaining 'a’ for comifig pressures other than the
three confining pressures is not justified for ghbonfining pressures, where
the variation of elastic modulus with confining gsare is highly nonlinear.

The complexities involved in the estimation of takstic modulus of the
jointed rock in triaxial compression using the abowo approaches are
eliminated by using multi variant regression, cdesng the confining
pressureds) as extra variable to arrive at a single equatfidre data used for
the regression analysis includes results of expmarimon different types of
rocks at three different confining pressures 1,75MPa taken from Roy
(1993), Arora (1987), Yaji (1984), Brown and Tragiw (1970) and Einstein
and Hirschfield (1973) and is presented in Figstol3. The uniaxial
compressive strength of different rocks used fer multi variant regression
analysis is also given in the figures. To differatet between the same type of
rock samples with different properties, a numbemigen following their
names, e.g. plaster of Paris 1 and plaster of Rarislodulus ratio in the
figures is the ratio of the elastic modulus of fbeted rock to the elastic
modulus of the intact rock.

The new statistical equation obtained from the mu#riant regression
analysis of the data is given below.
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Ej = exp{- o.ooos{cy‘c?;—‘]fﬂ E, ©6)
3

In the above equation,; Es the elastic modulus of the jointed rock at a
confining pressure afi;, o and E are the uniaxial compressive strength and
elastic modulus of the intact rock respectively ahds the joint factor
obtained from Eq. 1.

3. NUMERICAL MODEL

Triaxial compression tests on intact and jointedkso are simulated in
numerical analysis using axisymmetric model. Inghesent study the explicit
two-dimensional finite difference program Fast Llaaggian Analysis of
Continua FLAC] version 3.3 [Cundall, (1976); Itasca, (1995)] &d for the
analysis. The grid used for simulating the triaxesdt sample is shown in Fig.
4. Only symmetric quarter of the total test samesimulated in the
numerical analysis since stress-state will be agtrbecause of the equivalent
uniform properties assumed for the jointed rock g@amA non-linear elastic
confining stress dependant model following hypddatlation proposed by
Duncan and Chang (1963) with Mohr-Coulomb failuriéecion is used in the
present study. The material behavior of intact rackmodeled using the
following nonlinear relation.

E, :[1_ Ry (1-sing)(oy —03)TK Pa(%jn o

2ccosp+ 203sing Pa

Where, Eis the elastic modulus of the intact rockandos are the major and
minor principal stresses respectively, ¢ gnare shear strength parameters of
intact rock and K anah are hyperbolic parameters for the intact rockisR
failure ratio given as

(01 —Gs)f (8)

Rf =
(01 - 0-:.’))u|t

where 61 -03)¢ is the failure stress andi( - o3)y is the ultimate or the
asymptotic value of stress.

The numerical analysis was performed in two statjes,f' stage being the
confining pressure application and th¥ &tage being the application of the
deviator stress. The analyses were performed udigglacement control
method in which equal vertical deformation is sfiedito the grid points on
the top surface to simulate the straining of thenm@a. The vertical
deformation was applied by initializing the velgcif the grid points on the
top surface to a very small value of 3e-7 m ped Isti@p. Loading was done in
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several steps with 10 iterations per load step.illbgum is defined in the
analysis as the state in which the out-of-balanceefis less than 100 N.

4. RESULTSAND DISCUSSION
4.1  Numerical Analysisof Intact Rocks

Numerical analysis of the intact rock samples wiast ftaken up. Three
different intact rocks for which the experimentatess-strain curves were
reported in the literature were selected for thalyamis. Kota sandstone with
linear stress-strain response (Yaji, 1984), Haizusiiesstone with slightly
nonlinear stress-strain response (Hoshino et @r2)land Yamaguchi marble
with highly nonlinear stress-strain response (Gtklamd Ramamurthy, 1981)
were selected and their stress-strain responses predicted from numerical
analysis. The properties of these rocks and théréog pressures at which
they were tested are given in Table 4.

Table 4 - Properties of rocks used for the numeanalysis of intact rocks

Intact Rock Hyperbolic Cohesion Angle of Failure Confining
Type Parameters (c) internal Ratio  pressure
friction
Modulus Exponent R
number (n) @ (R) (03)
(K) MPa MPa
Kota 35279 0.113 11 44° 0 1,25,5
sandstone
Haizume 1001 0.39 11.3 19 0.5 20, 50, 100
Siltstone
Yamaguchi 440986 0.091 40 26.7 0.99 31,52, 155
Marble

The comparison between the numerically predictesinguFLAC) and the

experimental stress-strain behaviour of three tntacks are shown in Figs. 5
to 7 at different confining pressures tested. dh de observed that the
predicted stress-strain curves closely follow theegimental data at all
confining pressures for all the three intact rocknly for the case of
Yamaguchi marble, slight deviation with the expexrimal results was
observed (Fig. 7). But the amount of variation ésywsmall considering the
highly nonlinear behaviour of the particular rodkrom these three figures, it
is confirmed that the stress-strain response afctntocks follows hyperbolic
shape. The increase in the deviator stress withirtbeease in confining

pressure, the effects of various properties ofitikect rock, namely the shear
strength properties, hyperbolic parameters are wefiresented in the
numerical analysis.
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4.2  Numerical Analysisof Jointed Rocks

The analyses of triaxial compression tests on gointocks were also
performed using displacement control method dissdissarlier. AFISH
function was written irfFLAC to determine the elastic modulus of the jointed
rock with the regression equation developed froengtesent studyhe FISH
function obtains the value of modulus ratipf& the rock mass from Eg. 6
and then calculates the elastic modulus of thetgdimock by multiplying E
with the elastic modulus of the intact rock)(HheFISH function is called at
each iterative step in the numerical analysis. jdbh#ed rocks selected for the
analysis were Agra sandstone with single, two dméet joints oriented at an
angle of 70 (Arora, 1987) and block jointed gypsum plastethwitio sets of
joints oriented at 3060° (Brown and Trollope, 1970) were selected for the
numerical study. The black jointed gypsum plasteraferred as gypsum
plaster-2 in this paper to differentiate it frone thther gypsum plaster referred
as gypsum plaster-1 in Figs. 1 to 3, whose experiatalata is used for the
regression analysis. Among these tests, triaxsbten Agra Sandstone were
conducted on cylindrical samples of dimensions 38 diameter and 76 mm
height whereasriaxial tests on gypsum plaster-2 were conducteccablic
samples of dimensions 100 mm length, 100 mm widith 200 mm height
The properties of the intact rocks and the proesnmtif the joints used as input
for this set of analyses are given in Table 5. tJseBguency reported in this
table is calculated as number of joints per metgtld from the number of
joints present in the triaxial samples. Table 5oatgves the confining
pressures at which these jointed rocks were tested.

The results from the numerical analyses of triatests on jointed rock soil
samples and their comparison with the experimetatd are shown in Figs. 8
to 10. Figure 8 gives the comparison of predictidss-strain curves with
experimental results for three cases of Agra sandstvith single, two and
three joints inclined at an angle of 7@ the major principal stress direction
respectively, tested at a confining pressure offaMI'he numerical results are
reasonably close to the experimental curves. Thasvs that the numerical
model as discussed above is representative ofctiv@lgointed rock sample.
Thus it can be proclaimed that the effect of jdadtor, which represents the
number of joints in the jointed rock, is simulatedll in the numerical model.
Figure 9 shows the comparison of numerical and rxeatal results of
triaxial tests on Agra sandstone samples with tfokgs inclined at 70tested
at three different confining pressures i.e. 2.&n8 10 MPa. From the figure, it
can be observed that the numerical model captiredtress-strain response
of jointed rock at different confining pressuresyweell. Thus the validity of
the model for jointed rocks with different jointctar tested at different
confining pressures is confirmed from the presamtys
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Numerical analysis of block jointed gypsum plastewith two sets of joints
(30°/60°) exhibiting highly nonlinear stress-strain behavits next taken up.
Analysis was carried out for four different configipressures at which the

Table 5 - Properties of intact rock and joints ukedhe numerical analysis of
jointed rocks

Rock type Properties of the intact rock Properties of joints Failu | Confin
Hyperbolic | Cohes| Angle | Uniaxial | Numb | Numb | Orientat| Join rz;?o rler:]sgs '
properties ion of | compres| erof | erof | ion of t (RI) P o u
Modu | Expon| (c) | intern| sive | joints | joints | critical | fact f
lus ent al strength| in the | per joint or If/los)
numb frictio | (oy) |triaxia| meter| (B) (J) a
er (n) MPa n MPa I depth
(K) ) sampl| (3)
e
Agra 10196 0.14 19.22| 51° 110 1 13 70° 20 | O 5
sandstone | 4 2 |26 |70 |40 |01 |5
3 39 70° 60 | 0.3 | 25,5,
10
Gypsum 9000 | 0.7 0 345 |20 4 20 30° 588 | 0.9 1.4,
Plaster-2 3.4,
6.9,
13.8
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experiments were carried out. Results from thiso$etnalyses are presented
in Fig. 10. Figure 10 illustrates that the numdriceodel was successful in

predicting the highly nonlinear behaviour of th@dH jointed sample. The

matching between the actual results and predicfiotisis case is not as good
as it was in other cases reported above. Consgléhia approximations

involved in formulating the joint factor to represehe total behaviour of joint

system, slight deviation observed in the presemnto$eanalyses on block

jointed samples is reasonable.

Summarizing the results from all the sets of nuoaranalyses, it is clear that
present numerical model can be successfully emglaysimulate any type of
jointed rock with any type of joint system testednetriaxial compression any
confining pressure. The validity of the regressiomdels equations by
Ramamurthy (1994) and Sitharam et al. (2001a) wai§ied for field cases of

excavations with jointed rock masses by Varadarefaai. (2001), Sitharam et
al. (2001a) and Sitharam et al. (2001b). The regwasequation developed in
the present study is much simpler than the equaitised in the analysis of
above case studies. The applicability of the equafor the prediction of

stress-strain behaviour of various jointed rock glashin triaxial compression
is established from the present study. The samatiequcan also be used for
simulating the field problems involving jointed koanasses, with less
complexity than the other previously developedesgion equations.

5. CONCLUSIONS

The constitutive behaviour of the jointed rock denrepresented by a simple
regression equation using equivalent continuum aggpr based on joint
factor. This equation has been incorporated imtimerical progranfFLAC to
obtain the elastic modulus of the jointed rock frma properties of the intact
rock and the joint factor. Results from numericahwdation of triaxial
compression tests on various intact and jointets@howed that the present
equivalent continuum model works very well for dint types of single,
multiple and block jointed rocks with different fmoifabric, joint orientation
under a wide range of confining pressures. The migalenodel developed in
the present study is efficient in simulating théeefs of number of joints,
strength of joint, orientation of joint, type ofaloand confining pressure. The
input data required for the analysis is the praperf intact rock and the joint
factor. Using the numerical model developed frors tstudy, rock mass
behavior can be reasonably estimated of in the ramleseof detailed
experimental data. This numerical model can be eyeqal for field problems
also to obtain the stress distributions around eatians in jointed rock
masses.
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Fig. 1 - Experimental data of triaxial compressiests on jointed rock
samples conducted at a confining pressure of 1 iéed for the
regression analysis
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Fig. 2 - Experimental data of triaxial compressiests on jointed rock
samples conducted at a confining pressure of 5 iéed for the
regression analysis
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Fig. 3 - Experimental data of triaxial compresgiests on jointed rock
samples conducted at a confining pressure of 7 iéed for the
regression analysis
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Fig. 4- Grid used to simulate the triaxial test pm
of rock in numerical analysis
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Fig.5 - Comparison of experimental and numericedsst-strain behaviour of
intact sandstone (experimental data after Aror8719



SITHARAM T.G. & MADHAVI LATHA, G.— STRESS-STRAIN BEHAVIOUR OF INTACTANDJONTEDROCKS 121

140
] ® A N Experimental
- ——— FLAC |
120 —
] 03=100 MPa
100 —
g ]
s 4 03="50 MPa
a 80 -]
< 4
@ -
S 4
.g 60 —
g 03=20 MPa

Axial Strain (%)
Fig. 6-Comparison of experimental and numericadsstrstrain behaviour of
intact Haizume siltstone (experimental data aftestino, 1972)
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Fig. 7 - Comparison of experimental and numerit@ss-strain behaviour of
intact Yamaguchi marble (experimental data afterkiate and
Ramamurthy, 1981)
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Fig. 8 - Comparison of experimental and numerit@ss-strain behaviour of

Agra sandstone with varying joint frequency (expenntal data after
Arora, 1987)
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Fig. 9- Comparison of experimental and numericadsst-strain behaviour of
Agra sandstone at different confining pressurepdemental data
after Arora, 1987)
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Fig.10 - Comparison of experimental and numeritr@iss-strain behaviour of
block jointed gypsum plaster-2 at different conimi pressures
(experimental data after Brown and Trollope, 1970)



