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ABSTRACT 
 
A simple statistical relation to obtain the elastic modulus of jointed rocks and 
thereby predicting their stress-strain response in triaxial compression is 
presented in this paper. This equation has been arrived from the multi variant 
regression analysis of large amount of experimental data reported in literature. 
In this equation, the jointed rock is represented as a continuum material with 
equivalent elastic modulus (Ej) obtained from the properties of the intact rock 
and joint factor (Jf). Joint factor is the integration of the properties of joints to 
take care of the effects of frequency, orientation and strength of joint. The 
equation presented in this paper is simple compared to similar equation 
developed by earlier researchers. The effect of confining pressure is also 
incorporated in the equation thus facilitating the use of a single equation to use 
for any confining pressure. This equation is incorporated in a commercial 
finite difference program Fast Lagrangian Analysis of Continua (FLAC) to 
carry out the equivalent continuum analysis of jointed rock samples tested in 
triaxial compression. The constitutive behaviour of the rock is represented by 
a confining stress dependant hyperbolic relation with Mohr-Coulomb failure 
criterion. The numerical model has been validated against experimental results 
from wide range of intact and jointed rock samples with different joint fabric 
and joint orientation and for a wide range of confining pressures (1 MPa to 
155 MPa). Results showed that the stress-strain curves obtained from 
numerical analysis are matching closely with the experimental stress-strain 
curves for various intact and jointed rock samples exhibiting linear to highly 
nonlinear stress-strain behaviour. This study confirmed that the numerical 
model developed in the present study can efficiently simulate the effects of 
number of joints, strength of joint, orientation of joint, type of rock and 
confining pressure.  
 
Keywords: Rocks, intact, jointed, triaxial, stress-strain, equivalent continuum, 
numerical model  
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1. INTRODUCTION 
 
Natural discontinuities to some level are common features of rocks. 
Discontinuities in zones of high stresses near an underground deep excavation 
can provide planes for shear failure and displacement. All of the currently 
accepted design methods for foundations, slopes and underground excavations 
in rock masses require geometric and mechanical information of the 
discontinuities. Determination of elastic modulus of jointed rocks is very 
important for successful design of structures involving jointed rock masses. 
Design methods can be categorized as analytical, observational or empirical. 
Empirical methods assess the stability of structures by the use of past practices 
to predict future behaviour based upon factors most critical towards the 
design. In practice, it is almost impossible to explore all of the joint systems or 
to investigate all their elastic characteristics and explicitly simulating them in 
theoretical models. Thus employing empirical derivations to model rock mass 
as continuum with equivalent material properties has gained acceptance over 
the last fifteen years. The process that the authors have found to be of greatest 
value is to employ equivalent continuum approach into numerical codes to 
from a successful tool for the prediction of the behaviour of jointed rock 
masses. 
 
Some equivalent continuum models were developed to simulate the jointed 
rock mass by Singh (1973a, 1973b), Zienkiewicz et al. (1977), Gerrard (1982), 
Cai and Horii (1992), Yoshida and Horii (1998), Oda et al. (1993) and 
Kawamoto et al. (1988). Some researchers have developed empirical relations 
to estimate the equivalent material properties of the jointed rock mass from the 
geometrical and mechanical properties of discontinuities. These equations can 
be incorporated in other constitutive models for effective simulation of jointed 
rock masses, e.g. Wei and Hudson (1986) Barton and Bandis (1990), Hoek 
and Brown (1997), Ramamurthy (1994), Sridevi and Sitharam (2000) and 
Sitharam et al. (2001a). Most of these models are developed based on 
laboratory triaxial testing of small jointed rock samples. The equations based 
on joint factor to estimate the equivalent elastic modulus for jointed rock mass 
proposed by Ramamurthy (1994) and Sitharam et al. (2001a) from extensive 
laboratory testing of intact and jointed rock specimens are very simple and 
practical among all the models stated above. These equations require the 
estimation of two simple joint parameters, namely the number of joints in the 
rock per meter depth and the inclination of most critical joint set. Detailed 
description of the model and design tables for estimating the joint strength 
parameter from the unconfined compressive strength of the intact rock and 
joint inclination parameter from the orientation of the joint are given by 
Ramamurthy (1994) and Sitharam et al. (2001a).  
 
Ramamurthy (1994) developed two different equations for obtaining the 
modulus ratio of jointed rocks, one equation for the unconfined case 
representing the uniaxial compression and the other for the confined case, 
representing the triaxial compression. The equation given for the modulus 
ratio of jointed rock in triaxial compression calls for the estimation of the 
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elastic modulus of the jointed rock in uniaxial compression separately, which 
in turn requires the estimation of the uniaxial compressive strength of jointed 
rock. This involves total three equations to be used to obtain the elastic 
modulus of a jointed rock sample in triaxial compression. Sitharam et al. 
(2001a) developed different equations to obtain the elastic modulus of a 
sample at different confining pressures in triaxial compression. In the present 
study, a single regression equation is developed from the multi variant 
regression analysis of the same data used by Ramamurthy (1994) and 
Sitharam et al. (2001a), considering the confining stress (σ3) as an extra 
parameter. This equation is comparatively simple in the sense the effect of 
confining pressure also is incorporated in the equation thus making it very 
simple to use for any confining pressure in triaxial compression. This 
regression equation is incorporated in the commercial finite difference 
program Fast Lagrangian Analysis of Continua [FLAC] (Cundall, 1976; Itasca, 
1995), that is widely used for modeling of rock masses. The triaxial 
compression tests carried out on different rocks with different joint parameters 
at different confining pressures are simulated in FLAC, the elastic modulus of 
the jointed rocks obtained using the new regression equation developed from 
the present study. The results are presented in the form of stress-strain curves. 
The results from the numerical analysis are compared with the results from 
laboratory triaxial compression tests. 
 
2. NEW REGRESSION EQUATION 
 
Various researchers have established statistical relations to express the elastic 
modulus of jointed rocks in terms of the joint parameters and the elastic 
moduli of the corresponding intact rocks. Ramamurty (1994) provided 
exponential relations to express the elastic modulus of jointed rock in terms of 
a joint factor, Jf, and the confining stress, σ3. These relations were developed 
based on laboratory studies on numerous artificial joints reported by Roy 
(1993), Arora (1987), Yaji (1984) and Einstein and Hirschfield (1973). Joint 
factor for a given jointed rock can be estimated based on the joint frequency 
(Jn), orientation of the joints (β) with respect to the direction of major principal 
stress and the strength of the joint. The joint factor for given jointed rock is 
estimated using the following equation: 

     
r n 

J
 = J n

f           (1) 

Where, Jn is number of joints per meter depth,  ‘n’ is the inclination parameter 
depending on the orientation of the joint β, ‘r’ is the roughness or joint 
strength parameter depending on the joint condition. The value of ‘n’ is 
obtained by taking the ratio of log (strength reduction) at β =90o to log 
(strength reduction) at the desired value of β. This inclination parameter is 
independent of joint frequency. The values of ‘n’ are for various orientation 
angles and the joint strength parameter ‘r’ for various uniaxial compressive 
strengths of intact rock are given by Ramamurthy (1994) based on extensive 
laboratory testing and are listed in Tables 1 and 2.  
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Table 1 - Joint inclination parameter ‘n’ for different β  
[after Ramamurthy (1994)] 

 
Orientation of joint β in degrees Joint inclination parameter ‘n’ 

0 0.82 
10 0.46 
20 0.11 
30 0.05 
40 0.07 
50 0.31 
60 0.46 
70 0.63 
80 0.82 
90 1.00 

 

Table 2 - Values of ‘r’ for different values of σci [after Ramamurthy, (1994)] 
 

Uniaxial compressive strength of 
intact rock, σci (MPa) 

Joint strength parameter, r 

2.5 0.30 
5.0 0.45 
15.0 0.60 
25.0 0.70 
45.0 0.80 
65.0 0.90 
100.0 1.00 

 
The equation for obtaining the elastic modulus of jointed rock for any 
confining pressure σ3 in triaxial compression is given by Ramamurthy (1994) 
as 
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In the above equation, Ej (σ3=0) is the elastic modulus of the jointed rock in 
uniaxial compression, which can be calculated using the following equation. 

 

( ) ( ) ( )0  E J 10  1.15-exp  = 0  E 3if
-2

3j =σ×=σ          (3) 

                                            
Where Ei (σ3=0) is the elastic modulus of the intact rock in uniaxial 
compression. In equation (1), σcj is the uniaxial compressive strength of 
jointed rock given as  
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( ) cif j c  J 0.008-exp  = σσ       (4) 

 
Where σci is the uniaxial compressive strength of intact rock. The set of 
statistical relations given by Sitharam et al. (2001a) for estimating the elastic 
modulus of jointed rock at different confining pressures are represented as 

 

( ) ifj E J a-exp  E ×=                                                      (5) 

Where ‘a’ is an empirical constant determined from the statistical curve fit 
analyses for the experimental data and Jf is the joint factor. The value of ‘a’ for 
three different confining pressures is given in Table 3. For confining pressures 
other than those listed in Table 3, Er could be interpolated or extrapolated. 
 

Table 3 - Value of the constant ‘a’ for different confining  
Pressures [after Sitharam et al. (2001a)] 

 
Confining pressure 

(MPa) 
Value of  ‘a’ 

1.0 -0.0113 
5.0 - 0.0103 
7.0 - 0.0082 

 
The estimation of elastic modulus of jointed rock using Eq. 5 requires the 
estimation of the coefficient 'a' for different confining pressures. Moreover, 
the linear interpolation for obtaining 'a' for confining pressures other than the 
three confining pressures is not justified for higher confining pressures, where 
the variation of elastic modulus with confining pressure is highly nonlinear. 
 
The complexities involved in the estimation of the elastic modulus of the 
jointed rock in triaxial compression using the above two approaches are 
eliminated by using multi variant regression, considering the confining 
pressure (σ3) as extra variable to arrive at a single equation. The data used for 
the regression analysis includes results of experiments on different types of 
rocks at three different confining pressures 1, 5, 7 MPa taken from Roy 
(1993), Arora (1987), Yaji (1984), Brown and Trollope  (1970) and Einstein 
and Hirschfield (1973) and is presented in Figs. 1 to 3. The uniaxial 
compressive strength of different rocks used for the multi variant regression 
analysis is also given in the figures. To differentiate between the same type of 
rock samples with different properties, a number is given following their 
names, e.g. plaster of Paris 1 and plaster of Paris 2. Modulus ratio in the 
figures is the ratio of the elastic modulus of the jointed rock to the elastic 
modulus of the intact rock. 
 
The new statistical equation obtained from the multi variant regression 
analysis of the data is given below. 
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In the above equation, Ej is the elastic modulus of the jointed rock at a 
confining pressure of σ3, σci and Ei are the uniaxial compressive strength and 
elastic modulus of the intact rock respectively and Jf is the joint factor 
obtained from Eq. 1.   
 
3. NUMERICAL MODEL 
 
Triaxial compression tests on intact and jointed rocks are simulated in 
numerical analysis using axisymmetric model. In the present study the explicit 
two-dimensional finite difference program Fast Lagrangian Analysis of 
Continua [FLAC] version 3.3 [Cundall, (1976); Itasca, (1995)] is used for the 
analysis. The grid used for simulating the triaxial test sample is shown in Fig. 
4. Only symmetric quarter of the total test sample is simulated in the 
numerical analysis since stress-state will be isotropic because of the equivalent 
uniform properties assumed for the jointed rock sample. A non-linear elastic 
confining stress dependant model following hyperbolic relation proposed by 
Duncan and Chang (1963) with Mohr-Coulomb failure criterion is used in the 
present study. The material behavior of intact rock is modeled using the 
following nonlinear relation. 
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Where, Ei is the elastic modulus of the intact rock, σ1 and σ3 are the major and 
minor principal stresses respectively, c and φ are shear strength parameters of 
intact rock and K and n are hyperbolic parameters for the intact rock. Rf is 
failure ratio given as 

( )
( )ult31

f31
f  

 
  R

σ−σ
σ−σ

=
                                                 (8) 

 
where (σ1 -σ3)f  is  the failure stress and (σ1 - σ3)ult is the ultimate or the 
asymptotic value of stress.  
 
The numerical analysis was performed in two stages, the 1st stage being the 
confining pressure application and the 2nd stage being the application of the 
deviator stress. The analyses were performed using displacement control 
method in which equal vertical deformation is specified to the grid points on 
the top surface to simulate the straining of the sample. The vertical 
deformation was applied by initializing the velocity of the grid points on the 
top surface to a very small value of 3e-7 m per load step.  Loading was done in 
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several steps with 10 iterations per load step. Equilibrium is defined in the 
analysis as the state in which the out-of-balance force is less than 100 N.  
 
4. RESULTS AND DISCUSSION 
 
4.1 Numerical Analysis of Intact Rocks 
 
Numerical analysis of the intact rock samples was first taken up. Three 
different intact rocks for which the experimental stress-strain curves were 
reported in the literature were selected for the analysis. Kota sandstone with 
linear stress-strain response (Yaji, 1984), Haizume siltstone with slightly 
nonlinear stress-strain response (Hoshino et al., 1972) and Yamaguchi marble 
with highly nonlinear stress-strain response (Gokhale and Ramamurthy, 1981) 
were selected and their stress-strain responses were predicted from numerical 
analysis. The properties of these rocks and the confining pressures at which 
they were tested are given in Table 4. 
 

Table 4 - Properties of rocks used for the numerical analysis of intact rocks 
 

Hyperbolic 
Parameters 

Intact Rock 
Type 

Modulus 
number 

(K) 

Exponent 
(n) 

Cohesion 
(c) 
 
 

MPa 

Angle of 
internal 
friction 

(φ) 

Failure 
Ratio 

 
(Rf) 

Confining 
pressure 

 
(σ3) 
MPa 

Kota 
sandstone 

35279 0.113 11 44° 0 1, 2.5, 5 

Haizume 
Siltstone 

1001 0.39 11.3 19° 0.5 20, 50, 100 

Yamaguchi 
Marble 

440986 0.091 40 26.7° 0.99 31, 52, 155 

 
The comparison between the numerically predicted (using FLAC) and the 
experimental stress-strain behaviour of three intact rocks are shown in Figs. 5 
to 7 at different confining pressures tested.  It can be observed that the 
predicted stress-strain curves closely follow the experimental data at all 
confining pressures for all the three intact rocks. Only for the case of 
Yamaguchi marble, slight deviation with the experimental results was 
observed (Fig. 7). But the amount of variation is very small considering the 
highly nonlinear behaviour of the particular rock.  From these three figures, it 
is confirmed that the stress-strain response of intact rocks follows hyperbolic 
shape. The increase in the deviator stress with the increase in confining 
pressure, the effects of various properties of the intact rock, namely the shear 
strength properties, hyperbolic parameters are well represented in the 
numerical analysis. 
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4.2 Numerical Analysis of Jointed Rocks 
 
The analyses of triaxial compression tests on jointed rocks were also 
performed using displacement control method discussed earlier. A FISH 
function was written in FLAC to determine the elastic modulus of the jointed 
rock with the regression equation developed from the present study. The FISH 
function obtains the value of modulus ratio Er for the rock mass from Eq. 6 
and then calculates the elastic modulus of the jointed rock by multiplying Er 
with the elastic modulus of the intact rock (Ei). The FISH function is called at 
each iterative step in the numerical analysis. The jointed rocks selected for the 
analysis were Agra sandstone with single, two and three joints oriented at an 
angle of 70° (Arora, 1987) and block jointed gypsum plaster with two sets of 
joints oriented at 30°/60° (Brown and Trollope, 1970) were selected for the 
numerical study. The black jointed gypsum plaster is referred as gypsum 
plaster-2 in this paper to differentiate it from the other gypsum plaster referred 
as gypsum plaster-1 in Figs. 1 to 3, whose experimental data is used for the 
regression analysis. Among these tests, triaxial tests on Agra Sandstone were 
conducted on cylindrical samples of dimensions 38 mm diameter and 76 mm 
height whereas triaxial tests on gypsum plaster-2 were conducted on cublic 
samples of dimensions 100 mm length, 100 mm width and 200 mm height. 
The properties of the intact rocks and the properties of the joints used as input 
for this set of analyses are given in Table 5. Joint frequency reported in this 
table is calculated as number of joints per meter depth from the number of 
joints present in the triaxial samples. Table 5 also gives the confining 
pressures at which these jointed rocks were tested. 
 
The results from the numerical analyses of triaxial tests on jointed rock soil 
samples and their comparison with the experimental data are shown in Figs. 8 
to 10. Figure 8 gives the comparison of predicted stress-strain curves with 
experimental results for three cases of Agra sandstone with single, two and 
three joints inclined at an angle of 70° to the major principal stress direction 
respectively, tested at a confining pressure of 5 MPa. The numerical results are 
reasonably close to the experimental curves. This shows that the numerical 
model as discussed above is representative of the actual jointed rock sample. 
Thus it can be proclaimed that the effect of joint factor, which represents the 
number of joints in the jointed rock, is simulated well in the numerical model.   
Figure 9 shows the comparison of numerical and experimental results of 
triaxial tests on Agra sandstone samples with three joints inclined at 70° tested 
at three different confining pressures i.e. 2.5, 5 and 10 MPa. From the figure, it 
can be observed that the numerical model captured the stress-strain response 
of jointed rock at different confining pressures very well. Thus the validity of 
the model for jointed rocks with different joint factor tested at different 
confining pressures is confirmed from the present study. 
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Numerical analysis of block jointed gypsum plaster-2 with two sets of joints 
(30°/60°) exhibiting highly nonlinear stress-strain behaviour is next taken up. 
Analysis was carried out for four different confining pressures at which the  
 
Table 5 - Properties of intact rock and joints used for the numerical analysis of 

jointed rocks 
 

Properties of the intact rock Properties of joints 

Hyperbolic 
properties 

Rock type 

Modu
lus 

numb
er 

(K) 

Expon
ent 

 
(n) 

Cohes
ion 
(c) 
 
 

MPa 

Angle 
of 

intern
al 

frictio
n 

(φ) 

Uniaxial 
compres

sive 
strength 

(σci) 
MPa 

Numb
er of 
joints 
in the 
triaxia

l 
sampl

e 

Numb
er of 
joints 
per 

meter 
depth 
(Jn) 

Orientat
ion of 
critical 
joint  
(β) 

Join
t 

fact
or 
(Jf) 

Failu
re 

ratio 
(Rf) 

Confin
ing 

pressur
e 

(σ3) 
MPa 

1 13 70° 20 0 5 

2 26 70° 40 0.1 5 

Agra 
sandstone 

10196
4 

0.14 19.22 51° 110 

3 39 70° 60 0.3 2.5, 5, 
10 

Gypsum 
Plaster-2 

9000 0.7 0 34.5° 20 4 20 30° 588 0.9 1.4, 
3.4, 
6.9, 
13.8 
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experiments were carried out. Results from this set of analyses are presented 
in Fig. 10. Figure 10 illustrates that the numerical model was successful in 
predicting the highly nonlinear behaviour of the block jointed sample. The 
matching between the actual results and predictions in this case is not as good 
as it was in other cases reported above. Considering the approximations 
involved in formulating the joint factor to represent the total behaviour of joint 
system, slight deviation observed in the present set of analyses on block 
jointed samples is reasonable.  
 
Summarizing the results from all the sets of numerical analyses, it is clear that 
present numerical model can be successfully employed to simulate any type of 
jointed rock with any type of joint system tested at in triaxial compression any 
confining pressure. The validity of the regression models equations by 
Ramamurthy (1994) and Sitharam et al. (2001a) was verified for field cases of 
excavations with jointed rock masses by Varadarajan et al. (2001), Sitharam et 
al. (2001a) and Sitharam et al. (2001b). The regression equation developed in 
the present study is much simpler than the equations used in the analysis of 
above case studies. The applicability of the equation for the prediction of 
stress-strain behaviour of various jointed rock samples in triaxial compression 
is established from the present study. The same equation can also be used for 
simulating the field problems involving jointed rock masses, with less 
complexity than the other previously developed regression equations. 
 
5. CONCLUSIONS 
 
The constitutive behaviour of the jointed rock can be represented by a simple 
regression equation using equivalent continuum approach based on joint 
factor. This equation has been incorporated in the numerical program FLAC to 
obtain the elastic modulus of the jointed rock from the properties of the intact 
rock and the joint factor. Results from numerical simulation of triaxial 
compression tests on various intact and jointed rocks showed that the present 
equivalent continuum model works very well for different types of single, 
multiple and block jointed rocks with different joint fabric, joint orientation 
under a wide range of confining pressures. The numerical model developed in 
the present study is efficient in simulating the effects of number of joints, 
strength of joint, orientation of joint, type of rock and confining pressure. The 
input data required for the analysis is the properties of intact rock and the joint 
factor. Using the numerical model developed from this study, rock mass 
behavior can be reasonably estimated of in the absence of detailed 
experimental data. This numerical model can be employed for field problems 
also to obtain the stress distributions around excavations in jointed rock 
masses. 
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Fig. 1 - Experimental data of triaxial compression tests on jointed rock 

samples conducted at a confining pressure of 1 MPa used for the 
regression analysis 
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Fig. 2 - Experimental data of triaxial compression tests on jointed rock 

samples conducted at a confining pressure of 5 MPa used for the 
regression analysis 
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Fig. 3 - Experimental data of triaxial compression tests on jointed rock 
samples conducted at a confining pressure of 7 MPa used for the 

regression analysis 
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Fig. 4- Grid used to simulate the triaxial test sample  
    of rock in numerical analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5 - Comparison of experimental and numerical stress-strain behaviour of 
intact sandstone (experimental data after Arora, 1987) 
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Fig. 6-Comparison of experimental and numerical stress-strain behaviour of 

intact Haizume siltstone (experimental data after Hoshino, 1972) 
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Fig. 7 - Comparison of experimental and numerical stress-strain behaviour of 

intact Yamaguchi marble (experimental data after Gokhale and 
Ramamurthy, 1981) 
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Fig. 8 - Comparison of experimental and numerical stress-strain behaviour of 

Agra sandstone with varying joint frequency (experimental data after 
Arora, 1987) 
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Fig. 9- Comparison of experimental and numerical stress-strain behaviour of 

Agra sandstone at different confining pressures (experimental data 
after Arora, 1987) 
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Fig.10 - Comparison of experimental and numerical stress-strain behaviour of 

block jointed gypsum plaster-2 at different confining pressures 
(experimental data after Brown and Trollope, 1970)  


