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ABSTRACT 
 
This paper demonstrates the applicability of artificial neural networks in predicting the 
elastic properties of jointed rocks. The data from uniaxial and triaxial compression tests 
on different rocks with different joint properties reported in literature was used as input 
for training the network. A simple method to integrate the properties of joints into 
single entity called Joint factor (Jf), which can take care of the effects of frequency, 
orientation and strength of joint as given by Ramamurthy (1994) was used in the 
analysis. Two different techniques of artificial neural network (ANN) such as Feed 
Forward Backward Propagation(FFBP) and Radial Basis Function (RBF) networks are 
used to predict the elastic modulus ratio, Er. Further two different models 'A' and 'B' 
were trained to predict the elastic modulus ratio Er for the unconfined and confined 
cases respectively. The model 'A' was trained to predict Er from the Joint factor alone 

and the model 'B' was trained to predict Er from Jf and the confining pressure. 90% of 
the input data was used for the training/learning and the remaining 10% was used for 
testing the predicting capabilities of the network in both the cases. The results from 
models were compared with two different regression models from literature. Results 
from the analysis demonstrate that both the neural network techniques yield similar 
result and in general neural network approach is efficient in predicting the elastic 
modulus ratio from joint parameters and confining stress conditions compared to other 
two regression models tested. 
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1.0 INTRODUCTION 
 
Rock masses are seldom found in nature without joints or discontinuities. Jointed rocks 
are characterized by the presence of inherent discontinuities of varied sizes with 
different orientations and intensities, which can have significant effect on their elastic 
response. Determination of elastic moduli of jointed rocks is very crucial for successful 
modelling of problems involving jointed rock masses. The modeling of rock masses can 
be approached in two different ways. In the first approach, the intact rock is modeled 
using solid elements, whereas the joints are modeled using special joint elements. In the 
second approach, the rock mass is treated as an equivalent continuum whose properties 
are assigned in such a way as to represent the contributions of the intact rock and joints 
towards its overall response. In practice, it is almost impossible to explore all of the 
joint systems or to investigate all their elastic characteristics and explicitly simulating 
them in theoretical models. In these cases, the use of the equivalent continuum models 
to simulate the elastic behaviour of jointed rock masses is found to be promising.  
 
Some simple equivalent continuum models were developed to estimate the strength of 
rock mass by Zienkiewicz et al. (1977), Gerrard (1982), Hoek and Brown (1997), 
Barton and Bandis (1990), Ramamurthy (1994), Sridevi and Sitharam (2000) and 
Sitharam et al., (2001). Majority of these models are developed based on laboratory 
triaxial testing of small jointed rock samples. The equivalent continuum methods call 
for the estimation of elastic properties of the jointed rocks concerned. Laboratory 
determination of the elastic properties of jointed rock cores present practical problem 
due to large expense and time involved, coupled with the need for highly accurate 
measurement techniques. Various researchers proposed rock mass classification 
systems to express the quality and strength of jointed rocks. One of the first such 
systems to be developed is the Rock Quality Designation (RQD) system by Deere and 
Deere (1988) to provide a quantitative estimate of rock mass quality from drill core 
logs. This system only accounts for the frequency of jointing within a rock mass as a 
measure of its quality. Later systems which have been developed such as the Rock 
Mass Rating (RMR) by Bieniawski (1973 & 1979) and Q system by Barton (1988) 
incorporate geological, geometric and design/engineering parameters in arriving at a 
quantitative value of the rock mass quality.  

 
Another simple method to integrate the properties of joints into single unit is given by 
Ramamurty (1994) based on extensive laboratory testing of intact and jointed 
specimens of plaster of paris, sandstone and granite [Arora (1987), Yaji (1984) and Roy 
(1993)]. This method proposes that a single entity called Joint factor (Jf) can take care 
of the effects of frequency, orientation and strength of joint. The joint factor Jf is 
estimated using the following equation 
 

   
r n 

J
 = J n

f         (1) 

 
Where, Jn is number of joints per meter depth,  ‘n’ is the inclination parameter 
depending on the orientation of the joint β, ‘r’ is the roughness or joint strength 
parameter depending on the joint condition. The value of ‘n’ is obtained by taking the 
ratio of log (strength reduction) at  β =90o to log (strength reduction)  at the desired 
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value of β . This inclination parameter is independent of joint frequency. The values of 
‘n’ are for various orientation angles are given in Table 1 [Ramamurthy (1994)]. The 
joint strength parameter ‘r’ is obtained from a shear test along the joint and is given as  r 
= τj  ⁄ σnj where τj is the shear strength along the joint and σnj is the normal stress on the 
joint.  The values of ‘r’ are given in Table 2 [Ramamurthy (1994)] based on extensive 
laboratory testing. 
 
In a field situation joint factor can be estimated from drill core logs. The core size 
should at least NW size 2.15 inches in diameter and should be drilled with a double–
tube core barrel. For the sample thus collected the joint factor can be estimated using 
equation (1).  Number of joints in the meter length of the field specimen gives the value 
of Jn, the orientation of the joints which are critical for the safety of the structure will 
determine the value of ‘n’ (Table 1) and the uniaxial compressive strength of the intact 
rock will determine the value of ‘r’ (Table 2). For a given jointed specimen tested in the 
laboratory, to estimate the joint factor one can calculate the number of joints per meter 
depth (joint frequency Jn), joint inclination parameter ‘n’ can be obtained from Table 1 
for a given joint inclination, joint strength parameter ‘r’ can be obtained from Table 2 
for given σci. 
 

Table 1 - Joint inclination parameter ‘n’ for different β  
[Ramamurthy (1994)] 

 
Orientation of joint β in degrees Joint inclination parameter ‘n’ 

0 0.82 
10 0.46 
20 0.11 
30 0.05 
40 0.07 
50 0.31 
60 0.46 
70 0.63 
80 0.82 
90 1.00 

 
The equivalent continuum models developed by Ramamurthy (1994) and Sitharam et 
al. (2001) use joint factor along with intact rock properties to represent the elastic 
properties of the jointed rocks using a set of statistical relations. Ramamurthy (1994) 
proposed an exponential model to express the elastic modulus ratio, Er, which is defined 
as the elastic modulus of the jointed rock to the elastic modulus of the intact rock, in 
terms of a joint factor, Jf, and the confining stress, σ3. Sitharam et al. (2001) expressed 
Er in terms of the joint factor alone, in an exponential model, with different relations for 
different confining stresses. These equations are very simple, involve very less number 
of input parameters. Both these models are found to be applicable for field problems 
involving jointed rock masses [(Varadarajan et al. (2001), Sridevi (2000) and Sitharam 
et al. (2001)].  
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Table 2 - Values of ‘r’ for different values of σci  [Ramamurthy (1994)] 
 

Uniaxial compressive strength of 
intact rock,σci (MPa) 

Joint strength parameter,  r 

2.5 0.30 
5.0 0.45 

15.0 0.60 
25.0 0.70 
45.0 0.80 
65.0 0.90 

100.0 1.00 
 
Though the statistical relations are good enough to predict the properties fairly well, 
they are limited by the degree of non-linearity they can model. Moreover, statistical 
relations constrain the data along a particular geometry, which may not always be 
favorable to capture the non-linear relations existing between various parameters. 
Artificial Neural Networks have been found to be very efficient in handling non-linear 
relationships and intelligent prediction of the required parameters. They offer new and 
exciting possibilities in fields such as pattern recognition where traditional 
computational methods have not been so successful. Standard computing methods rely 
on a linear approach to solve problems, while neural networks use a parallel approach 
similar to the workings of the brain. ANNs have been used for a wide variety of 
applications in Geomechanics and Rock Engineering [Toll (1996)]. 
 
The present paper uses Artificial Neural Network (ANN) approach for the efficient 
prediction of the elastic moduli of jointed rocks from the confining pressure and the 
joint factor. A database of results from laboratory triaxial tests on different rocks with 
different properties of joints was used for training and testing of the network model. 
The complete database comprised of 523 datasets, of which 237 datasets pertained to 
unconfined tests and remaining 286 datasets pertained to tests under various confining 
pressures. The database includes the results from triaxial tests on jointed rocks reported 
by Arora (1987), Yaji (1984), Roy (1993), Brown and Trollope (1970), and Einstein 
and Hirschfield (1973). The two ANN techniques such as FFBP and RBF networks are 
used. The results obtained were compared with those predicted using statistical relations 
developed by Ramamurthy (1994) and Sitharam et al. (2001). The model was trained to 
determine the modulus ratio for jointed rock from the joint factor and confining 
pressure. The aim is to arrive at an efficient system to predict the elastic modulus of 
jointed rock without predefining a mathematical geometry to correlate the properties. 
This classifies the problem as one of pattern recognition rather than a conventional 
trend setting one. Usually, the choice of data for the training and testing datasets is done 
on a random basis. However, the way the data is divided has a significant effect on the 
performance of the ANN Model  [Shahin et al. (2000)]. The present paper uses a simple 
data processing method to ensure statistical consistency within the training and testing 
datasets. The results of the analysis using the ANN model were compared with those 
obtained from equations proposed by Ramamurthy (1994) and Sitharam et al. (2001). 
Finally, some factors, which are important while designing any rock engineering 
problems using ANNs, are discussed. 
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2. BACKGROUND 
 
Various researchers have established statistical relations to express the elastic modulus 
of jointed rocks in terms of the joint parameters, collectively expressed in the form of 
joint factor, and the elastic moduli of the corresponding intact rocks. Ramamurthy 
(1994) provided exponential relations to express the elastic modulus ratio, Er, in terms 
of a joint factor, Jf, and the confining stress, σ3. These relations were based on 
laboratory studies on numerous artificial joints. The equation for the unconfined 
condition was given as follows: 
 

( )
( ) ( )f
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     (2) 

 
Tangent elastic modulus of jointed rock for any other σ3 is derived from the tangent 
elastic modulus of jointed rock at σ3 = 0.0 using the formula given below. 
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Where σcj is the uniaxial compressive strength of jointed rock and is given as follows: 
 

( )f

ci

cj

r  c J 0.008-exp =  = 
σ
σ

σ       (4) 

 
Where σci is the uniaxial compressive strength of intact rock. 

 
Equation 1 is valid for σ3 = 0.0. For different confining pressures the elastic modulus of 
jointed rock is calculated using Eq. 3, where σcj is obtained from Eq. 4 and Ej (σ3 = 0.0) 
is obtained from Eq. 2. 

 
The set of statistical relations given by Sitharam et al. (2001) for estimating the uniaxial 
compressive strength and elastic modulus of jointed rock are as given below. 
 

( )f

ci

cj

r  c J 0.0065-exp =  = 
σ
σ

σ       (5) 

 

( )f
i

j
r J aexp = 

E

E
 = E ×       (6) 

 
Where ‘a’ is a coefficient determined from the statistical curve fit analyses for the 
experimental data and Jf is the joint factor. The value of empirical constant ‘a’ for 
different confining pressures is given in Table 3. For confining pressures other than 
those listed in Table 3, Er could be interpolated or extrapolated. 
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Table 3 - Value of the constant ‘a’ for different confining  

pressures [Sitharam et al. (2001)] 
 

Confining pressure 
(MPa) 

Value of  ‘a’ 

0.0 -0.0113 
1.0 -0.0064 
5.0 - 0.0103 
7.0 - 0.0082 

 
The relations, thus developed, by Ramamurthy (1994) and Sitharam et al. (2001) were 
found to be fitting well to their data sets used for testing the relations. However, 
statistical analyses suffer from some major limitations. For a given database, there is a 
limit over the regression of the data, which a trend line can accommodate. For a 
particular database the relation having the maximum possible regression coefficient is 
ranked highest and the accuracy is considered best. In such a case, the possibility of 
greater accuracy in prediction and conformity to a wider range of data is completely 
negated. Moreover, in evolving trend-fitting curves by statistical regression, the data is 
constrained along a particular two-dimensional geometry. For a dataset containing 
sparse data, statistical methods encourage the filtering of data outlying a particular 
geometrical band, to obtain best fitting. In doing so, the essence of the remaining data, 
and the information contained therein, is completely eliminated. In this light, there is a 
need for a method of prediction, which can capture the maximum possible information 
from the whole dataset without confining the correlation along a particular geometry. 
Artificial Neural Networks have been found to carry out such correlations with great 
efficiency. They exhibit the capability to analyze highly non-linear relationships 
existing between various parameters 
 
3. ARTIFICIAL NEURAL NETWORKS 
 
Artificial Neural Networks are computational models in which the mode of data 
processing replicates the mode of synaptic dynamics in the biological neural networks. 
The similarity between artificial and biological neural networks lie in the basic parallel 
and distributive mode of operation, although the later are much more complex. ANNs 
consist of closely interconnected numerical processing units, which offer a rich 
structure exhibiting some properties of biological neural networks [Yegnanarayana 
(1999)]. Evidently, an ANN consists of a large number of interconnections, between its 
processing units, which carry the weights of the network. The processing units, or 
neurons, are present in a layered structure comprising of an input layer, an output layer 
and a hidden layer. A typical three layered feed forward back propagation network is 
shown in Figure 1a.  
  
Radial Basis Network particularly Generalized Regression Neural Network (GRNN) is 
also used to perform function approximation task. Figure 1b shows a typical RBF 
network. Although both RBF and Multi-layer Perceptron such as FFBP are nonlinear 
feed forward backpropagation networks and are universal approximator fundamentally. 
They are quite different from each other in their structure. Generally, Feed forward 
back propagation has less number of neurons in its hidden layer whereas in a RBF 
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network may have the number of neurons as many as the number of pattern available 
for training.  
 
3.1 Learning of ANN 
 
Feed Forward Back Propagation (FFBP) Technique 
 
FFBP learning is achieved by training the network pattern wise, i.e. each input is 
presented to the network one by one and when all the input is presented it is called one 
epoch. The training of a FFBP network involves a procedure to arrive at a final set of 
weights in the connections based on which predictions can be made. The Error Back 
propagation algorithm is the most commonly used algorithm for ANN predictions. The 
gradient descent algorithm was used to determine the weight updation after each epoch. 
 
The connections between the neuron layers hold the weights in a matrix known as the 
weight space. Initially, a random set of weights is assigned to the weight space, which is 
to be optimised by the optimisation algorithm. In a general training scheme, the whole 
dataset containing sets of input-output pairs is fed to the ANN. The ANN predicts the 
outputs for the given inputs using the initialised set of weights. The outputs, thus 
predicted, are compared against the standard output and the sum-squared error is 
determined. The change in the weight space in the next step depends on this error. It is 
expressed as the gradient of descent of the error towards the minimum. The change in 
the weight, after each epoch, for the connection between the ith neuron of one layer and 
the jth neuron of the next layer is given as 
 

∆Ψij = - η ( ∂ � / ∂Ψij )       (7) 
 

Where, η is the learning rate parameter, and Ψij  is the corresponding weight of the 
connection. The update of weights for the (n+1)th   pattern is given as 
 
 Ψij (n+1) = Ψij (n) +  ∆Ψij (n)      (8) 
The error �, is the Sum Squared Error and is determined by the following relation 
 

� = Σ [ Π’Π k(n)- Π k 
 (n) ]2      (9) 

 
Where Πk

 
 (n) is the output determined by the network for the nth pattern and Π’ k(n)  is 

the corresponding output given in the training data set. 
 
The input and the hidden layers consist of linear processing units where as the output 
layer consists of the non-linear processing units. The non-linearity in the processing 
units in the output layer is achieved using the non-linear Sigmoid function as follows 
[Zurada, (1997)].     

ƒ (sum) = 1/ ( 1 + e – (sum) )      (10) 

Where (sum) is the weighted sum of the inputs for a processing unit. 
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The dynamic optimization of the weights continues till a user specified goal is attained. 
The goal can be specified either as a minimum error goal or as a maximum number of 
epochs. In the present case, the networks were trained to 5000 epochs.  
 
Radial Basis Network (RBF) 
 
Radial basis networks are based on sound mathematical concepts like theory of 
interpolation, regularization, kernel regression etc. In this paper, Generalized 
Regression Neural Network (GRNN) is used which is based on kernel regression. 
Consider the nonlinear regression model as: 
 
 ( ) Nixfy iii ,......2,1=+= ε  (11) 
 
x and y are model input and output  respectively having ‘N’ number of patterns. ’N’ 
should be large enough. Here, f(xi) represent a regression function and εi measure of 
noise in data. 
 

)( ixf is conditional mean of y for a given x   i.e.  regression of y  on x . 
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)( xyf y is Conditional Probability Density function (pdf) of y , given x . )(xf x  is pdf of 

x . ),(, yxf yx is Joint pdf of x  and y . 
 
To estimate probability density functions, a non parametric estimator Parzen-Rosenblatt 
density estimator is used, which is as follows (Haykin, 2001), 
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Where ‘m’ is the dimension of input vector. In light of Nadaraya Watson regression 
estimator approximating function )(xf  can be written as: 
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)(xK is a kernel function. Here, )(xK is chosen as Multivariate Gaussian distribution. 
)(xf  will take the form of 
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In the above equations ‘h’ is smoothing parameter which is a positive number, this is 
also called bandwidth as it controls the size of kernel. 
 
Learning of such GRNN is based on estimation of bandwidth ‘h’ which can be 
determined by using a suitable generalized cross validation procedure. From equation 
16, it is clear that observable values (yi) can be viewed as weights. All the patterns are 
used to find out the approximating function. The efficient  GRNN can handle if  our 
data is noisy or have many copies of a  similar data. 

3.2 ANN Model 
 
Two models 'A' and 'B', are prepared for the unconfined and confined cases 
respectively. The model 'A' was trained to predict the elastic modulus ratio, Er , from the 
Joint factor, Jf . Both the networks were trained using the feed forward back propagation 
algorithm. The model ‘A’ is also trained by using RBF network. The network B was 
trained to predict Er from Jf and the confining stress, σ3. The basic architecture and the 
training parameters of the ANNs are shown in Table 4. 
 

Table 4 - Architecture of the FFBP Model 
 

Parameter Model A Model B 

Number of layers 3 3 
Number of neurons in Input 1 2 
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Number of neurons in Hidden 25 21 
Number of neurons in output 1 1 
Number of epochs run 5000 5000 
Size of training dataset 218 261 
Size of testing dataset 23 25 

 
Data Processing for ANN 
 
Shahin et al (2000) reported the relationship between the statistical properties of the 
training and testing datasets and the model performance. They have also shown that the 
performance of an ANN model is affected by the proportion of the data chosen to form 
the testing and training datasets. It is essential to consider the statistical properties, like 
the mean and standard deviation, of the training and testing datasets to ensure that each 
dataset represents the same population. The statistical method of division presents a 
very simple yet effective mode of data division. The data was divided into training and 
testing datasets using sorting methods, to maintain statistical consistency. In the present 
case, 10% of the data formed the testing database for each ANN. Consequently, data for 
the testing datasets were extracted at regular intervals from the sorted database and the 
remaining 90% of the data formed the training database. The statistical consistency of 
the data used for the datasets was verified with respect to the mean, standard deviation, 
maximum value and minimum value. The results of the statistical analyses for 
unconfined and confined conditions are shown in Tables 5 and 6 respectively. 
 
4. ANALYSIS 
 
The data used in the analyses pertained to laboratory tests conducted by various 
researchers over a wide range of rock types. The rock types were namely, plaster of 
Paris, gypsum plaster, sandstone and granite. The intact rock properties of the four 
rocks are shown in Table 7. 

 
Table 5 - Results from statistical analysis of data used for  

datasets for unconfined case 
 

Parameter Dataset Mean Median Standard 
deviation 

Maximum 
value 

Minimum 
value 

Training 154.5 87.38 156.3 795.8 13 Jf 
Testing 185.2 97.56 198.1 778 15.97 
Training 0.3637 0.335 0.269 0.99 0.002 Er 
Testing 0.3571 0.35 0.2961 0.96 0.01 

 
Table 6 - Results from statistical analysis of data used for 

datasets for confined case 
 

Parameter Dataset Mean Median Standard 
deviation 

Maximum 
value 

Minimum 
value 

Training 150.650 87.22 148.195 716.25 13 Jf 
Testing 113.433 77.5 92.012 358 19 
Training 4.338 5 2.452 7 1 σ3 
Testing 4.5 5 2.589 7 1 

Er Training 0.373 0.35 0.272 0.99 0.005 
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 Testing 0.336 0.37 0.226 0.98 0.04 
 

Table 7 - Properties of the intact rock  
 

Property Sandstone Agra sandstone Granite Gypsum 
plaster 

Mass density (KN/m3) 22.5 22.17 26.5 15.68 
Uniaxial compressive 
strength (MN/m2) 

70 110 123 20 -50 

Cohesion (MN/m2) 14.0 19.22 25.5 2.17 
Angle of internal friction 
(degrees) 

 
44 

 
51 

 
46.5 

 
34.5 

 
The complete database constituted of 527 datasets, of which 241 pertained to 
unconfined tests and remaining 286 datasets pertained to varying degrees of confining 
conditions. The analyses were carried out over confining stresses of 1, 5 and 7 MPa. 
Consequently, two groups, A and B, corresponding to the unconfined and confined 
cases respectively, were identified and analyzed separately.  In the group A, 218 
datasets were used to develop the various models, and hence formed the training set, 
and the remaining 23 datasets were used to evaluate the performance of the models, and 
hence formed the testing dataset. In the group B, 261 datasets constituted the training 
set and 25 sets constituted the testing set. The division of the data into the testing and 
training datasets was done on a regular sampling basis, in order to maintain statistical 
consistency. This helped in maintaining a uniform distribution of the data in each set 
throughout the whole sample space. This method of data division was meant to serve a 
dual purpose, as it has been observed that statistical consistency of the training and 
testing data enhances the performance of an ANN and subsequently helps in evaluating 
them better (Shahin et al., 2000).  
 
The datasets were analyzed using three different models, which use the joint factor (Jf) 
to represent the joint parameters and predict the elastic modulus ratio (Er). These 
models are the ANN models and the exponential models given by Ramamurthy (1994) 
and Sitharam et al. (2001) from regression analysis of experimental data. The 
performance of the ANN models as developed in the present work was compared 
against the remaining two models. As mentioned earlier, the training data sets were 
used for predicting Er from the models. These models were evaluated and compared on 
the basis of their accuracies of predictions over the testing datasets. In the confined 
case, the joint factor was the only input for each of the models. The outputs, Er, of the 
models were compared against the standard values of the testing dataset. In the confined 
case the inputs were the Joint factor (Jf) and the Confining stresses (σ3).  
 
5. RESULTS AND DISCUSSION 
 
Neural network modeling of rock joint properties yielded some interesting results. The 
results from both FFBP and RBF are presented in this section. The results from the 
analyses are compared with the results from analyses using regression models for 
unconfined as well as confined cases. 
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5.1 Case A: 

Case A deals with the prediction of modulus ratio (Er) values from the joint factor (Jf) 
for the unconfined case using both networks with model  'A' and the equivalent 
continuum models developed by Ramamurthy (1994) and Sitharam et al. (2001). The 
predicted values of modulus ratio Er using ANN for the unconfined case are plotted 
against the original experimental values of Er, in the testing dataset in Fig. 2. The 
accuracy of prediction is estimated by drawing a 45° line to represent the 100% 
accuracy in prediction. A visual inspection reveals that, of the 23 predicted values of Er, 
7 values are very close to the 45° line, which represents the pattern of original 
experimental values, 11 values lie above the line and remaining 5 values lie below the 
line for FFBP network and for RBF network 6 values lie on or very close to 45 degree 
line, 9 values lie above the line and 8 values lie below the line. The Er values predicted 
by the regression models of Ramamurthy (1994) and Sitharam et al. (2001) for the same 
values of Jf are given in Figs. 3 and 4 respectively. From Fig. 4 it can be observed that 
out of the 23 predicted Er values by Ramamurthy's (1994) model, only three values lie 
on the 45° line,10 values lie below the line and remaining 10 values lie above the line. 
Figure 4 shows that the Er values predicted by Sitharam et al. (2001) follow almost 
identical trend as predicted by Ramamurthy (1994) for the unconfined case. It can be 
seen that the two regression models define an upper bound prediction pattern for the 
data as values below the 45 degree line are sparse. Whereas the data predicted by the 
neural network is in close range with the experimental data. This can be attributed to the 
fact that the predicted data in this case is not governed by any particular geometry. And 
hence, it has a fair probability to follow the non-linear pattern of the original data. The 
values predicted by FFBP is very close to that of predicted by RBF network for 
unconfined case. This aspect is illustrated in Fig. 5, where the experimental and 
predicted Er values are plotted against the joint factor (Jf). This figure clearly shows 
how the ANN prediction is taking care of the non-linearity in the data compared to the 
other two exponential models. Clearly, from the plots, all the methods have comparable 
degrees of accuracy, so that the efficiency of one method over the other cannot be well 
appreciated.  
 
Table 8 shows the percentage error of prediction obtained using each of the methods for 
the unconfined case. Clearly, the mean accuracy of prediction using ANNs is higher as 
compared to the other two models. But that cannot be taken as the sole evidence for the 
better predicting capabilities of the ANNs over statistical methods. The accuracy of the 
models has to be tested for the confined case also to judge the predicting capabilities of 
these models. 
 

Table 8 - Percentage error in predicting Er using 
different models for unconfined case 

 
 ANN Model 

FFBP                RBF 
Ramamurthy 

(1994) 
Sitharam et al. 

(2001) 

Average Absolute 
percentage error 

38.907           38.33 45.388 45.734 

Average accuracy 0.6109           0.616 0.546 0.543 
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5.2 Case B: 

Figure 5 clearly shows that ‘Er’ values predicted by FFBP is very close to those 
predicted by RBF network, so case B is analyzed by FFBP only. Case B deals with the 
prediction of Er values from the joint factor and confining pressure using FFBP network 
for model 'B' and the other two regression models. The predicted values of modulus 
ratio Er using FFBP for the confined case are plotted against the original experimental 
values of Er, in the testing dataset in Fig. 6. From figure, it can be observed that out of 
25 predicted values of Er, 4 values lie very close to 45° line, 10 values lie above the line 
and remaining 11 values lie below the line. But almost all the predicted values lie fairly 
close to the line, indicating that the values follow the experimental trend line. The Er 
values predicted by the regression models of Ramamurthy (1994) and Sitharam et al. 
(2001) for the same values of Jf are given in Figs. 7 and 8 respectively. From Fig. 7 it 
can be observed that out of the 25 predicted Er values by Ramamurthy's (1994) model, 
three values lie on the 45° line, 7 values lie above the line and remaining 15 values lie 
below the line. Fig. 8 shows that in case of Er values predicted by Sitharam et al. 
(2001), three values lie close to the 45° line, 10 values lie above the line and remaining 
12 values lie below the line. 
 
In the confined case the difference between the predicting capabilities of the models is 
very apparent from the plots. It can be seen from Figs. 7 and 8 that about 25% of the 
data is scattered much away from the 45° line, which clearly shows that the regression 
models fail in these particular cases. Where as from Fig. 6, it is evident that all the data 
predicted by FFBP model lies fairly close to the 45° line indicating that in all the cases 
the prediction is following the experimental trend. The predictions of FFBP and the 
other two regression models for the confined case are compared by plotting the Er 

values against Jf values in Figs. 9 and 10. The predictions of the regression models 
follow different exponential trends for different confining pressures. The effect of 
confining pressure is inherently taken care of by FFBP model and hence there is a 
single curve representing the prediction for all confining pressures. From these figures, 
it is obvious that the regression models are unable to model the non-linearity inherent in 
the distribution of the data for the confined case, particularly when the value of the joint 
factor is high. For the joint factor value up to 200, the FFBP prediction is falling in 
between the series of predicted curves for both the regression models. For higher Jf 

values, FFBP prediction is falling out of range of the band formed by the exponential 
curves and is following the experimental trend more closely. This is clear evidence for 
the better predicting capabilities of the FFBP for the confined case compared to the 
other two models tested. The reduction in accuracy of the regression models for the 
confined case can be attributed to the inherent deficiency of regression equations in 
correlating more than two parameters. However, with the ANN network the parameters 
are not constrained. The correlation is carried out according to the independent 
behaviour of each output parameter with respect to each of the input parameter. This 
enhances the correlations and hence the efficiency of predictions.  

 
The percentage error in prediction and mean accuracy of the various models for the 
confined case are shown in Table 9. Clearly the accuracies obtained using ANN model 
are much higher as compare to the other statistical methods in this case.  
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Table 9 - Percentage error in predicting Er using different  
models for confined case 

 
 FFBP Ramamurthy 

(1994) 
Sitharam et al. 

(2001) 

Average absolute 
percentage error 

18 31 34 

Average accuracy 0.82 0.69 0.66 
 
 
 
6. CONCLUSIONS 
 
In the present study, Artificial Neural Networks have been used for the efficient 
prediction of the elastic modulus ratio from joint parameters and confining stress 
conditions. The relations given by Ramamurthy (1994) and Sitharam et al. (2001) have 
been found to give satisfactory results for predictions in the unconfined case. However, 
it has been observed that these relations like give an upper bound prediction of data, 
which may not always be acceptable, even though the average accuracy is satisfactory.  
 
The efficiency of ANN model is much evident for confined case, for which the values 
predicted by the regression models greatly differ from the experimental values in some 
instances. This reflects that statistical relations are inherently incapable to model the 
non-linearity existing within the data. On the other hand, the Artificial Neural 
Networks, because of their rich structures for correlations, have been found to capture 
this non-linearity with comparable degree of accuracy above the tested regression 
models. The prediction curve for ANN model is unique for different confining 
pressures, unlike the band of exponential curves in case of regression models. The ANN 
prediction falls within the band for joint factor values less than 200 and falls out of the 
band for higher Jf values, following the experimental trend more closely for all the 
values of joint factor. Thus the ANN model provides significant advantage for handling 
problems involving practical discontinuous system. The present work supports the use 
of neural networks for the successful prediction of elastic properties of jointed rocks 
and opens up the possibility of embedding neural networks into numerical modeling 
codes for modeling the structures in jointed rocks. 
 



T G. SITHARAM,  KET.AL. –  INTELLIGENT PREDICTION OF ELASTIC PROPERTIES OF JOINTED ROCKS 

  

25 

References 
 

Arora, V.K. (1987). Strength and deformation behaviour of jointed rocks, Ph.D. Thesis, 
Indian Institute of Technology, Delhi, India. 

Barton, N. (1988). Rock Mass Classification and Tunnel Reinforcement Selection 
Using the Q-System. Rock Classification Systems for Engineering Purposes, ed. 
Kirkaldie, L., ASTM STP 984, pp. 59-84.  

Barton, N. and Bandis, S. (1990). Review of predictive capabilities of JRC-JCS model 
in engineering practice, Proc. Int. Conf. on Rock Joints, Rotterdam, Balkema, pp. 
603-610. 

Bieniawski, Z.T. (1973). Engineering classification of jointed rock masses, J. S. Afr. 
Inst. Min. Metall., Vol. 15, pp. 335-344. 

Bieniawski, Z.T. (1979). The geomechanics classification in rock engineering 
application, Proc. 4th Int. Cong. Rock Mech., ISRM, Montreux, Vol. 2, pp. 51-58. 

Brown, E.T. and Trollope, D.H. (1970). Strength of model of jointed rock, Journal Soil 
Mechanics and Foundation Division, ASCE, Vol. 96, SM2, pp. 685-704. 

Deere, D.U. and Deere, D.W. (1988). The Rock Quality Designation (RQD) Index in 
Practice, Rock Classification Systems for Engineering Purposes, (ed. L. Kirkaldie), 
ASTM Special Publication 984, pp. 91-101. 

Einstein, H. H. and Hirschfeld, R.C. (1973). Model studies in mechanics of jointed 
rocks, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 99, pp. 229-
248. 

Gerrard, C. M. (1982). Elastic models of rock masses having one, two and three sets of 
joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.19, pp. 5-23. 

Hoek, E. and Brown, E.T. (1997). Practical estimates of rock mass strength, Int. J. Rock 
Mech. Min. Sci., Vol. 34, No.8, pp. 1165-1186. 

Ramamurthy, T. (1994). Strength and modulus responses of anisotropic rocks, In Rock 
Engineering edited by Hudson, J. A., Vol. 1, No. 13, pp. 313-329.  

Roy, N. (1993). Engineering behavior of rock masses through study of jointed models, 
Ph. D. Thesis, Indian Institute of Technology, Delhi, India. 

Shahin, M.A., Jaksa, M.B. and Maier, H.R. (2000). Predicting the settlement of shallow 
foundations on cohesion less soils using back-propagation neural networks, 
Research report No. R 167, Dept. of Civil and Envi. Eng., University of Adelaide, 
Australia. 

Simon Haykin (2001) Neural Networks (A Comprehensive Foundation) Addison 
Wesley Longman (Singapore) Pte. Ltd, Indian Branch Delhi. 

Sitharam, T.G., Sridevi, J. and Shimizu, N. (2001). Practical equivalent continuum 
characterization of jointed rock masses, International Journal of Rock Mechanics 
and Mining Sciences, Vol. 38, pp. 437-448. 

Sridevi, J. (2000). Numerical modeling of jointed rock mass, Ph.D. Thesis, Indian 
Institute of Science, Bangalore, Inida.  

Sridevi, J. and Sitharam, T.G. (2000). Analysis of Strength and Moduli of Jointed 
Rocks, Int. J. Geotech.Geolog. Eng., Vol. 18, pp.1-19. 

Toll, D. (1996). Artificial intelligence applications in geotechnical engineering, 
Electronic J. Geotech. Eng. 

Varadarajan, A., Sharma, K.G., Desai, C.S. and Hashemi, M. (2001) Analysis of a 
powerhouse cavern in the Himalayas, Int. J. Geomech., Vol. 1, No. 1, pp. 109-127. 



J. OF ROCK MECHANICS & TUNNELLING TECH. VOL.9 NO.1, 2003 

 

26

Yaji, R.K. (1984). Shear strength and deformation of jointed rocks, Ph.D. Thesis, Indian 
Institute of Technology, Delhi, India. 

Yegnanarayana, B. (1999). Artificial Neural Networks, Prentice-Hall of India private 
Limited, New Delhi, India. 

Zienkiewicz, O.C., Kelly, D.W. and Bettess, P. (1977). The coupling of the finite 
element method and boundary solution procedures, International journal for 
numerical methods in engineering, Vol. 11, pp. 355 - 375.  

Zurada, J.M. (1997). Introduction to artificial neural systems, Jaico Publishing House, 
Mumbai, India. 



T G. SITHARAM,  KET.AL. –  INTELLIGENT PREDICTION OF ELASTIC PROPERTIES OF JOINTED ROCKS 

  

27 

 
 

 
 

 
      INPUT LAYER                 HIDDEN LAYER                               OUTPUT LAYER  

 
 
Fig. 1a - Three- layered feed forward back propagation Artificial Neural Network 

 
 
 
 

 

 
        Input layer                  Hidden layer constitutes               Output layer.  
        Dimension ‘m’           Radial Basis Functions. 
 
 

Fig.1b - A typical radial basis function network 
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Fig. 2 - Comparison of Er values predicted by ANN with experimental  

Values for unconfined case 
 

 
Fig. 3 - Comparison of Er values predicted by Ramamurthy (1994) with experimental 

values for unconfined case 
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Fig. 4 - Comparison of Er values predicted by Sitharam et al. (2001) 

with experimental values for unconfined case 
 

 
 

Fig. 5 - Comparison of ANN model with the regression models proposed by 
Ramamurthy (1994) and Sitharam et al. (2001) for unconfined case 
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Fig. 6 - Comparison of Er values predicted by ANN with experimental values for 
confined case 
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Fig. 7 - Comparison of Er values predicted by Ramamurthy (1994) with experimental 
values for confined case 
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Fig. 8 - Comparison of Er values predicted by Sitharam et al. (2001) 
with experimental values for confined case 
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Fig. 9 - Comparison of ANN model with the regression model proposed by 
Ramamurthy (1994) for confined case 
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Fig. 10 - Comparison of ANN model with the regression model proposed by Sitharam 
et al. (2001) for confined case 

 
 

 
 


